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1 THE IMPORTANCE OF RELATIONAL DATA TODAY

Nowadays, data have emerged as one of the most valuable assets in the world econ-

omy and its availability is continuously increasing due to the technological advance-

ments. In particular, the role of relational data has evolved from a mere academic

interest to a fundamental mean to support operational and strategic decisions of or-

ganizations worldwide. Understanding the multifaceted relationships and interactions

represented by these data becomes critical for unlocking insights that drive innovation,

efficiency, and growth. The burgeoning significance of relational data in our modern era

can be explored through the lens of advanced statistical methodologies like stochastic

block modelling (SBM).

Relational data, characterized by their focus on the connections and relationships be-

tween entities rather than on the entities themselves, provides a unique approach to

analyse complex systems. This type of data is intrinsic to networks, which can repre-

sent various aspects of reality: from the social interactions that shape our societies to

the biological networks that govern life processes. For instance, Facebook, a leading

social media platform, reported over 2.8 billion monthly active users in 2021, illustrating

the scale and impact of social networks in contemporary life. Similarly, the Internet of

Things (IoT) has connected billions of devices, generating a vast network of relational

data that encompasses everything from home appliances to industrial machinery.

Statistical models provide a systematic and rigorous framework for understanding the

intrinsic processes in interactions, estimating parameters, making predictions, and test-

ing hypotheses. Techniques such as stochastic block modelling allow us to uncover

latent patterns and groupings within networks, revealing the underlying organizational

principles that govern the behaviour of entities within the network. This methodological

approach is not merely academic; it has practical applications across a wide array of

disciplines.

In social sciences, for instance, relational data analysis can uncover the dynamics of

social networks, identifying influential individuals, understanding the spread of informa-

tion or misinformation, and mapping community structures. This can have profound
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implications for fields such as sociology, political science, and marketing, where un-

derstanding the flow of information and the structure of social groups is crucial. An

illustrative case is the analysis of Twitter data during political campaigns, which can re-

veal how information flows between different community clusters and identify the most

influential nodes in the network.

Figure 1: Analysis of the role of automated accounts in the spreading of misinformation during 2016

US elections (Indiana University, 2018) (Chengcheng Shao et al., 2018). Despite the falseness of the

news in question, some of the most influential accounts on the platform believed it because they have

been cited by many accounts (actually, bots), increasing the credibility of the information.

In the realm of biology and medicine, network analysis helps in mapping genetic in-

teractions, understanding the spread of diseases within populations, and identifying

potential pathways for therapeutic interventions. The complexity of biological systems

makes them ideal candidates for analysis through stochastic block modelling, providing

insights that can lead to breakthroughs in treatment and prevention strategies. For ex-

ample, the Human Protein Interaction Network has been extensively studied to under-

stand the relationships between different proteins and their impact on various diseases,

leading to new insights into cancer and neuro-degenerative disorders.
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In technology and business, the analysis of relational data is at the heart of network

optimization, algorithm development, and customer relationship management. Com-

panies leverage network analysis to improve supply chain operations, develop targeted

marketing campaigns, and enhance customer service. Amazon, for example, utilizes

relational data to refine its recommendation algorithms, thereby enhancing the cus-

tomer shopping experience and driving sales.

Despite its vast potential, the analysis of relational data poses significant challenges,

from the collection and storage of large datasets to the development of algorithms ca-

pable of handling the complexity and dynamism of real-world networks. Privacy and

ethical considerations also come to the forefront, particularly as data becomes more

personal and its analysis more penetrating. The balance between leveraging relational

data for insights and respecting individual privacy rights is a critical issue that requires

careful consideration and regulatory compliance.

This thesis will explore the mathematical and statistical fundamentals of stochastic

block modelling (Section 2), focusing on the definition and analysis of well-known mod-

els in the literature (Section 3). Additionally, a practical application on real-world data

will be used to show the potential of these models and the central role of relational data

for understanding complex systems (Section 4).

The ultimate goal of the paper is to explain complex relational data through the appli-

cation of stochastic block modeling, providing a robust methodological framework. By

clearly explaining the mathematical fundamentals, critically evaluating well-established

models, and applying these to tangible data, this work aims to establish a simple and

practical connection between theoretical statistical concepts and practical data analysis

challenges. Through this exploration, the thesis will offer a comprehensive resource for

effectively harnessing the potential of SBM in a variety of contexts.
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2 MATHEMATICALANDSTATISTICALFUNDAMENTALS

2.1 Introduction to SBM and Notation

One of the primary challenges in network analysis involves identifying communities

within networks that exhibit analogous patterns of connectivity. The Stochastic Block

Model (SBM) (Holland et al., 1983), a rigorous statistical approach for community detec-

tion, addresses this challenge. SBM analyzes connections in a population represented

as a graph of interlinked nodes and identifies distinct groups based on connectivity pat-

terns. Its principal objective is to determine the latent block memberships of nodes,

which are considered the fundamental factor determining inter-node connections. The

term ’stochastic’ underscores the inherent randomness in the model, where each pair

of clusters is linked to a specific probability of an edge existing between them. This

probabilistic approach not only allows for the simulation of varied network outcomes,

thereby more accurately representing the unpredictability of real-world networks but

also introduces a level of adaptability in modeling network complexities. Furthermore,

SBM assigns prior probabilities to each node’s community membership, usually based

on a known distribution, enhancing the model’s ability to capture the nuanced variability

and uncertainty within the data.

All stochastic block models share some common elements on which they are based.

The network is in the form of a graph with N nodes with edges connecting them, and

an N × N adjacency matrix Y of 1s or 0s indicating the presence or absence of an

edge between two nodes. The graph can be either undirected or directed; in the latter

case the adjacency matrix will not be symmetric. An important underlying assumption

is that each node belongs to one of the K < N communities, and such membership is

represented by a vector z.The number of communities K can be either fixed or learnt

from the data through different techniques (Section 2.2). In the first case, it implies to

have prior information about the data or to empirically test the model with a set of val-

ues forK and select the most performing one; the second case is represented by more

complex models which simultaneously estimate the number of clusters and the block

membership vector. The last elements are two K ×K matrices, namely E, which de-

notes the number of edges between each pair of groups, and B, the probability matrix
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representing the probability of observing an edge between nodes in different groups.

The model assumes the so called stochastic equivalence, that is, the presence of an

edge is conditionally independent given the group membership. As a consequence, all

the entries in the adjacency matrix follow a Bernoulli distribution and are conditionally

independent from each other given their block membership.

Figure 2: Example of SBM applied on a network; nodes

are grouped in 3 clusters, and we can observe more dense

interactions within the same cluster than between different

groups (Lee et al, 2019)

When applying SBM to real-world data, the block membership z and the probability

matrix B are not observable, and hence they are the variables of interest to infer. An

important assumption to do is that the probability of belonging to each class is indepen-

dent of the others, making z a multinomial variable with a probability vector π, which

usually follows a Dirichlet distribution.

2.2 Advanced Techniques for Mixture Models

The most crucial aspect of SBMs is related to the number of communities K in the

network. Many models assume prior knowledge of K or estimate it via cross vali-

dation, a technique which tests the performance of a model at different assignments

of the parameters, allowing to choose the best value. However, these methods can

be computationally expensive, not always feasible, or they don’t consider the intrinsic

uncertainty behind this parameter. An important step forward involves the definition

of models which simultaneously estimates the number of communities and the block

memberships by using a probabilistic approach instead of empirical methods (Geng et

al., 2019). These types of models are based on advanced concepts from Bayesian

nonparametric statistics, which encapsulates methods that do not restrict models to a
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fixed set of parameters; instead, it allows for an infinite dimensional parameter space,

enabling the model to adapt and grow in complexity with the amount of available data.

The techniques that will be used later in the paper are described below in terms of urn

models, random partition models and random probability measures.

2.2.1 Pólya Urn

The Pólya urn scheme (Pólya et al., 1923, Blackwell et al., 1973) refers to a general

framework of a stochastic process which can be explained as follows: suppose there

is an urn with N balls of K different colours, and let xi for i ∈ {1, ..., K} indicate the

number of balls of color i contained in the urn (
∑K

i=1 xi = N ). At each iteration, a ball is

drawn at random, hence color i will be observed with probability xi

N
; if color i is observed

from the draw, we update xi = xi +1, that is, we return the ball to the urn along with an

additional ball of the same colour. The main idea behind it is the opposite of the sam-

pling without replacement, where every time a colour is observed, it becomes less and

less probable to sample it again, until all the balls of that colour have been taken out of

the urn. In the Pólya urn scheme, instead, both the balls of a specific colour and the to-

tal number of balls in the urn increase at each iteration; therefore, the act of drawing the

same colour over time will affect continuously less the future samplings. The main lim-

itation of this scheme, however, is that it allows only for fixed prior number of colorsK.

Figure 3: Graphical representation of the Pólya urn

scheme, where the draw of a black ball is followed the re-

placement of 2 black balls.

2.2.2 Chinese Restaurant Process

The Chinese Restaurant Process (Pitman et al., 1995) is a modification of the Pólya

urn scheme in which, taking the previous example of the urn, the new ball introduced

will be of the same colour with a certain probability, otherwise a new colour will be

introduced. The process is explained using the analogy of a Chinese restaurant with

potentially infinite tables, each of which has potentially infinite seats. In this process, a

new customer entering the restaurant faces a choice: join an existing table or start a
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new one. The likelihood of joining an already occupied table is directly proportional to

the number of diners already seated there, effectively making it more probable that the

new arrival will choose to sit with others rather than alone. This probability is conditional

on the table assignments of previous customers, demonstrating how each decision

influences subsequent ones. Despite this tendency to join already occupied tables,

due to the inherent randomness of the process, the probability of generating a new tiny

extraneous cluster is not negligible and, depending on the concentration parameter of

the CRP in question, we would observe fewer large clusters or average clusters with

some small, isolated groups. It is important to notice that the CRP cannot be used

to consistently estimate the number of clusters in an SBM since it diverges when the

sample grows infinitely.

Figure 4: CRP scheme example, with a being the concentration parameter (Chan & Chin, (2019))

Let z= (zi), ∀i ∈ {1, ..., N} be the vector indicating at which table customer i is sit. Then

Pr(zi = c|z1, ..., zi−1) ∝

|c| if c is an existing table with customers

α if c is a new table

where α is the concentration parameter.
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2.2.3 Dirichlet Process

The Dirichlet process (Ferguson, 1973) is a fundamental concept which provides a

framework for modelling non-parametric probability distributions. The DP can be con-

sidered as the underlying probability distribution of the clustering configuration in the

CRP, hence enabling the sampling of cluster assignments from a distribution.

Formally, the Dirichlet Process is defined by two parameters: a base distribution G0

and a concentration parameter α. The base distribution G0 is a probability distribution

that characterizes the expected value of the process, essentially dictating the underly-

ing structure of the data or ”clusters” in the absence of any observed data.

Mathematically, if G ∼ DP(α,G0), then for any measurable partition (A1, . . . , Ak) of

the sample space, the vector (G(A1), . . . , G(Ak)) follows a Dirichlet distribution with pa-

rameters (αG0(A1), . . . , αG0(Ak)). The concentration parameter α, a positive scalar,

influences the variability of the process. It controls the number of distinct clusters (or

tables in the CRP metaphor) that are likely to be formed: a larger α leads to a higher

probability of new cluster formation, whereas a smaller α tends to favor the concentra-

tion of observations within existing clusters. The probability of a new customer joining

a new table, distinct from the existing ones, is given by α
α+N

, where N is the number

of previous customers. This is derived from the stick-breaking construction of the DP,

where the weights πi of the clusters are generated as follows:

• Let Vi ∼ Beta(1, α) for each i.

• Define πi = Vi
∏i−1

j=1(1− Vj) for each i.

This construction shows how the weights of the clusters are dependent on α and the

sequence of Beta-distributed random variables Vi. The weights πi represent the pro-

portions of the total population that belong to each cluster, and the infinite-dimensional

nature of the DP allows for an unlimited number of potential clusters, reflecting the non-

parametric flexibility of the model.

In essence, the Dirichlet Process offers a probabilistic mechanism for modeling an infi-

nite mixture model, where the number of mixture components (clusters) does not need

to be specified a priori. This property makes the DP particularly useful for applications

where the structure of the data is unknown and potentially complex, allowing for model

adaptability as more data becomes available.
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2.2.4 Mixture of Finite Mixtures

The Mixture of Finite Mixtures (Gnedin & Pitman, 2006) is a modification of the tradi-

tional mixture model described by the DP, adding an additional layer of complexity to

the CRP.

The innovative aspect of MFM, as indicated by its name, lies in its assumption that each

component within the mixture model is, in itself, a finite mixture distribution, allowing for

more control over the distribution dynamics of cluster assignments. In practice, the

MFM assumes that the true number of components K is a random variable following

a probability mass function (pmf) on N+, the set of positive natural numbers. It can

be proven that the number of clusters deriving from this pmf, out of N observations,

converges almost surely to the true value K as N grows, hence it is consistent. This

convergence contrasts with the DP, in which the number of clusters tends to diverge at

a logN rate, hence leading to inconsistent number of clusters. As a result, the MFM

defines a more balanced cluster assignment, typically resulting in groups with more

uniform size, while in the DP there would be many tiny extraneous clusters.
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3 LITERATURE REVIEW

Before analysing the more advanced models based on Bayesian nonparametric meth-

ods, it is appropriate to present a simpler model, which enables a better understanding

of the structure of SBMs.

3.1 Bayesian Inference in SBMs with Value-Directed Graphs

The model proposed is an a posteriori blockmodel with a fixed number of communi-

ties K (Nowicki et al., 2001), which can be adapted to undirected, directed, and value-

directed graph. The distinctive characteristic of SBMs is the inferencemethod proposed

to estimate the variables of interest: the block membership vector z, and the edge prob-

ability matrix B. In this case the inference method is a generalized Bayesian approach

combined with an MCMC algorithm, the Gibbs sampler. This model ensures, under the

correct assumptions and conditions, to reach convergence and consistent results.

3.1.1 Model Definition

The block structure of the SBM is defined as the joint distribution of the observed rela-

tions and of the block membership vector, based on the following distributions:

• Unconditional distribution of block membership:

Pr(zi = j, ∀i ∈ {1, ..., N}, with j ∈ {1, ..., K}) =
K∏
j=1

π
mj

j

where zi ∈ {1, ..., K} is the block membership of node i, πj is the probability of

being assigned to a specific community j, and mj =
∑N

i=1 1{zi = j} indicates the

number of community members in group j;

• Conditional distribution of relationships:

Pr(Y | z,π, B) =

(∏
a∈A

∏
1≤k<h≤K

(Ba(k, h))
Ea(k,h)

)
×

(∏
a∈A′

K∏
k=1

(Ba(k, k))
Ea(k,k)

)

where Y is the N ×N adjacency matrix of observed relations between the each

pair of nodes, a is a 2-tuple containing the directed relations between nodes in two
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clusters in both directions, A is the set of all possible a, A′ is a subset of A which

contains the symmetric relations (those which are equal in the two directions) and

the half of the set of asymmetric relations, B is aK×K×|A| array containing the

probabilities of observing each possible relation a∈ A between any pair of clusters

(k, h); since we are considering the case of a value-directed graph, the adjacency

matrix will not contain only 0s and 1s but the actual values of the relationships,

in accordance to the given alphabet A. Therefore, instead of being the standard

K×K edge probability matrix, B here is a multi-dimensional array. Analogously,

the edge-counting matrix E takes the form of a K × K × |A| array; its entries,

Ea(k, h), counts the number of times relation a is observed from a node in cluster

k and one in cluster h

• Stochastic block model distribution:

Pr(Y, z|π, B) =

(
K∏
k=1

πmk
k

)
×

(∏
a∈A

∏
1≤k<h≤K

(Ba(k, h))
Ea(k,h)

)
×

(∏
a∈A′

K∏
k=1

(Ba(k, k))
Ea(k,k)

)

Given the distributions defined above, it is possible to recover the block structure de-

fined by the latent membership vector z by applying the Bayes rule to get Pr(z |y,π, B).

In words, this distribution represent the posterior distribution of memberships given the

observed relations of the adjacency matrix Y. The last step for achieving the recovery

of the structure is probably the most important, that is, to estimate the posterior distri-

butions of the parameters (π, B) given z and y. The prior distributions assigned to the

parameters are two independent uniform Dirichlet distributions (with all the K parame-

ters equal), since both parameters describes probabilities, hence values between 0 and

1. An approximate evaluation of posterior estimates of such parameters is determined

through a Gibbs Sampling algorithm.

3.1.2 Gibbs Sampling

Gibbs sampling is an MCMC simulation method (Geman et al., 1984) used to generate

approximate samples from the posterior distribution through an iterative process which

alternates a simulation from the conditional distribution of a subgroup of the parame-

ters of interest, given the other subgroup, and a simulation of the latter, given the new

instances elaborated in the previous step. In the context of the proposed model, the
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first group is given by π and B; the second-step parameter will be the vector z. Below

is the pseudo-code of the algorithm:

initialize: π(p), B(p), z(p)

Draw π(p+1), B(p+1) from posterior distribution (π, B) given (z(p), Y )

repeat

for i = 1 to N do

Draw z
(p+1)
i from the conditional distribution of zi given

π(p+1), B(p+1), Y, z
(p+1)
h for h = 1, ..., i− 1, and z

(p)
l for l = i+ 1, ..., N

until convergence

Tests on this algorithm show that for networks of moderate size (below 100 nodes)

convergence happens after approximately 2M0 iterations (Nowicki et al., 2001), where

M0 is a preset number of iterations in which the parameters of the Dirichlet prior distri-

bution of π are decreased linearly from T1 = 10N to TM0 = 100K and the parameters of

the Dirichlet prior distribution of B are multiplied by a linearly increasing factor w from

w1 = 1/N to wM0 = 1. The reason for these M0 iterations is to improve the probabil-

ity of convergence by starting with over-dispersed prior distributions in order to avoid

ending stuck in a local optimum. The Gibbs sampler allows to obtain all the elements

necessary to recover the predictive posterior distribution of z given Y , and hence the

block membership of all the nodes in the network.

3.2 Mixed Membership Stochastic Block Model

One of the main limitations of several SBMs is the strict assumption that each element

of the network can belong exclusively to one community.

In the real world the scheme is much more complex, with the group of belonging of

each member possibly changing when it interacts with a specific individual rather than

another. In such a complex framework, the Mixed Membership Model (MMB) (Airoldi

et al., 2008) enables a more complete and realistic analysis of reality, by relaxing the

stricter assumption of SBM.
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3.2.1 Model Definition

The model presents some differences from the standard set of variables in SBMs. The

graphical representation of the data remains unchanged, with a directed graph with N

nodes, K communities, and an adjacency matrix Y , where Y (p, q) ∈ {0, 1} indicates

the presence of an interaction (edge) from node p to node q. Each node p is associated

with a randomK-dimensional vector πp, the elements of which indicates the probability

of belonging to each possible cluster. The K ×K matrix B is defined as the probability

matrix of observing an interaction between nodes in each possible pair clusters. The

main difference consists in the definition of the block membership vector z: each node p

has an indicator vector zp→q for each other node q in the network: it is a K-dimensional

vector the entries of which are all 0 except the entry indicating the block membership

of node p when interacting with node q, which will have value 1. The distributions of the

different elements described are the following:

πp ∼ Dirichlet(α), ∀ p ∈ {1, ..., N}

zp→q ∼ Multinomial(πp), ∀ (p, q) ∈ {1, ..., N} × {1, ..., N}

zp←q ∼ Multinomial(πq), ∀ (p, q) ∈ {1, ..., N} × {1, ..., N}

Y (p, q) ∼ Bernoulli (z>p→qB zp←q), ∀ (p, q) ∈ {1, ..., N} × {1, ..., N}

The MMB model can be seen as a generalization of the SBM, where the same latent

components can generate different networks among the same individuals. In fact, the

group membership of each node is context dependent, that is, it varies when the node

interacts with different nodes.

3.2.2 Variational Bayes Inference Algorithm

The Variational Bayes Method is an alternative to MCMC sampling methods like the

Gibbs sampling (Attias, 1999). The main difference with the MC techniques consists in

the fact that instead of sampling a numerical approximation of the true posterior distri-

bution of the parameter, variational methods usually consider an auxiliary distribution

of free latent parameters over the unknown parameters of interest, which can be seen

as an approximation of the true posterior and find an optimal solution for this approx-
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imation. In this sense, the variational methods can be seen as a form of Expectation

– Maximization algorithm: an iterative method which develops in an E step, where the

expectation of the log-likelihood is evaluated at the current estimated value of the pa-

rameters, and a step M, which maximizes the expected log-likelihood in the previous

step with respect to the parameters and updates such values. By doing so we contin-

uously adjust our approximation until it gets very close to the true posterior.

At the core of the variational methods there is the idea of minimizing the Kullback-Leibler

divergence between the true posterior distribution and the approximate one, that is, a

measure of the information lost when using the approximate distribution instead of the

true. The KL divergence is minimized through a coordinate ascent algorithm which can

be seen as a generalization of the EM algorithm.

The main advantage of using variational methods when compared with the Gibbs sam-

pler and other MCMC algorithms comes from the fact that, when the parameter space

to estimate is very large, the variational methods converge to a solution at a greater

speed. On the other hand, the variational methods may be limited in the accuracy

of their approximation because of the dependence on the chosen parametric family,

while the Gibbs sampler simply generates sample from the true distributions, hence

handling more complex posterior distributions. Therefore, the price to pay for a faster

convergence is the risk of introducing biases. Finally, the variational methods make

some specific assumptions about the approximate distribution, that is, it must be fully

factorized, which may be impractical in some cases.

3.2.3 Parameters Estimation

To estimate the parameters α, B, π and the arrays containing zp→q and zp←q (∀p, q),

namely Z→ and Z←, a nested variational inference algorithm is implemented, based

on the concept of variational Bayes method, using a set of free parameters, namely Γ

and Φ. The prior distributions for π1:N , Z→, and Z← are the following, based on these
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parameters:

πp
ind∼ Dirichlet(γp), ∀p ∈ {1, ..., N},γp is a K-dimensional vector

zp→q
ind∼ Multinomial(φp→q), ∀p, q ∈ {1, ..., N},φp→q is a K-dimensional vector

zp←q
ind∼ Multinomial(φp←q), ∀p, q ∈ {1, ..., N},φp←q is a K-dimensional vector

Instead of alternating the two update steps (one for the free parameters of Z and one

for the free parameters of π) as it is usually done in variational algorithms, they use a

nested ”for” loop to repeatedly update φp→q and φp←q and then update γp. In doing so,

the algorithm allocates less memory at each iteration and hence it converges faster to

a solution. The pseudocode of the algorithm (Airoldi et al., 2008) is the following

initialize: γ0p,k =
2N
K

for all p, k

repeat

for p = 1 to N do

for q = 1 to N do

get variational φt+1
p→q and φ

t+1
p←q = f(Y (p, q), γtp, γ

t
q, B

t);

partially update γt+1
p , γt+1

q , and Bt+1;

until convergence

The step of the inner for loop to get the variational for φ is a nested iterative algorithm:

initialize: φ0
p→q,g = φ0

p←q,h = 1
K
for all g, h ∈ K

repeat

for g = 1 to K do

update φs+1
p→q ∝ f1(φ

s
p←q,γp, B);

normalize φs+1
p→q to sum to 1;

for h = 1 to K do

update φs+1
p←q ∝ f2(φ

s
p→q,γq, B);

normalize φs+1
p←q to sum to 1;

until convergence

where f1 and f2 are specific updating formulas and φ0
p→q,g and φ

0
p←q,h are respectively

the probability for node p to belong to group g when interacting with node q and the

probability for node q to be in group h when interacting with node p (since φ0
p→q and

φ0
p←q are vectors with the group membership probabilities of each cluster). Finally, to
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derive the parameters of interest (B and α), an MLE approximation and a linear-time

Newton-Rapson method can be respectively used, based on the estimation of the free

parameters obtained in the algorithm. The approximate MLE of B is

B̂(g, h) =

∑
p,q Y (p, q) · φp→q,g · φp←q,h

(1− ρ) ·
∑

p,q φp→q,g · φp←q,h

where ρ is a sparsity parameter (Section 3.2.4) that modifies the probability parameter

of the Bernoulli distribution over Y (p, q).

The closed form solution for the approximate MLE ofα does not exist (Blei et al., 2003),

but the Newton-Rapson method applied to it uses the following gradient and Hessian

δLα

δαk

= N

(
ψ

(∑
k∈K

αk

)
− ψ(αk)

)
+
∑
p∈N

(
ψ(γp,k)− ψ

(∑
k∈K

γp,k

))
,

δLα

δαk1αk2

= N

(
1(k1=k2) · ψ′(αk1)− ψ′(

∑
k∈K

αk)

)

where N is the number of nodes and ψ(x) is the derivative of the log-gamma function.

3.2.4 Modeling Sparsity

Adjacency matrices are often sparse in networks, that is, they present many zeros (non-

interactions), but not all of them are significant for the model. Therefore, it is important

to make a distinction between observed non-interactions caused by some limits which

are not informative for the model and those which are due to the block structure itself.

A possible solution is to include a sparsity parameter ρ in the model (Airoldi et al.,

2008) as previously mentioned. Defining ρ as the portion of non-interactions which

are not informative, the new probability of observing a successful interaction becomes

[(1− ρ) · z>p→qB zp←q]. By doing so, the whole parameter estimation changes: since the

probability of observing an interaction is pre-multiplied by a factor between 0 and 1, the

interactions will be more informative now, and hence will influence more the parameter

estimation. In fact, by looking at the previous formula for the MLE of B, it is possible

to notice that having (1 − ρ) at the denominator increases the value of the ratio, the

numerator of which is a product of the total interactions and the free parameters. To

estimate the best value of the sparsity parameter, an approximate MLE is proposed in
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the following formula, using the estimated free parameters obtained in the variational

algorithm

ρ̂ =

∑
p,q(1− Y (p, q)) · (

∑
g,h φp→q,gφp←q,h)∑

p,q

∑
g,h φp→q,gφp←q,h

3.2.5 BIC Approach for Selection of Hyperparameter K

The BIC (Bayesian Information Criterion) is a technique base on the principle of model

selection of trade-off between model complexity and goodness-of-fit to the data. In the

context of block modeling, it can be used to estimate the number of communities in the

network, namely K. The process generally consists in considering a set of possible

values of K and fitting the model for each value, that is, finding the estimated param-

eters of the block structure. The BIC score is then computed as the log-likelihood of

observing the data given the estimated parameters plus a penalty term for the number

of parameters in the model. Applying the BIC criterion to the model discussed above,

we obtain

BIC = 2 · log[Pr(Y |π̂, Ẑ, α̂, B̂)]− (|α|+ |B|) · log |Y |

where |α|+ |B| indicates the number of parameters in the model (in this case, |α| = K,

|B| = K2), and |Y | is the number of observed interactions different from 0. The value

of K which minimizes the BIC score is considered the best fitting value. The main idea

behind the BIC approach is to penalize models with higher complexity, discouraging

overfitting. On the other hand, the BIC approximation may not be accurate when the

true underlying structure in the network is complex and it may cause underfitting. For

this reason, we should take the value of K estimated by the BIC method as a starting

point for further investigation on the true number of communities.

3.3 The SBM-MFM Model

As already discussed, one of the most evident limitations of the traditional SBMs is the

uncertainty about the true number of communities in a network. The SBM-MFM model

(Geng et al., 2019) makes a step forward and its contribution is two-folds: it allows to

simultaneously infer the number of clustersK and the community membership by com-

bining the SBM techniques with the Mixture of Finite Mixtures (MFM) approach, and it

establishes a framework to consistently detect convergence to the correct configura-
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tion by deriving non asymptotic bounds, according to which the posterior distribution on

the community assignments concentrates on the true configuration as the size of the

network N increases. The model proposed in the paper is the following:

K ∼ p(·), where p(·) is a p.m.f. on {1, 2, ...}

Brs = Bsr
ind∼ Beta(a, b), ∀r, s ∈ {1, ..., K}

Pr(zi = j |π, K) = πj, ∀j ∈ {1, ..., K}, i ∈ {1, ..., N}

π |K ∼ Dirichlet(α)

Yij | z, B, K
ind∼ Bernoulli(Bzizj ), 1 ≤ i < j ≤ n

where K is the true number of clusters, B is the probability matrix of observing an

edge between a node in cluster r and one in cluster s, since the SBM assumption that

such probability only depends on the community membership is valid, z is the vector

of block membership, π is the probability vector containing the probabilities associated

with each cluster, α is a K × 1 constant vector (all entries are equal), and Y is the

adjacency matrix indicating the presence of an edge between each pair of nodes. The

most suitable p.m.f. to choose for K is a Poisson (1) truncated to be positive (Geng et

al., 2019). In fact, the Poisson distribution is often widely used in Bayesian nonpara-

metric settings for modeling count data, including the number of clusters K in MFM;

the reason behind that is the potentially unbounded number of clusters this distribution

can support. Moreover, the parameter used in the Poisson distribution is clearly inter-

pretable as the expected value and variance of the number of clusters, and setting such

parameter to 1 ensures a moderate model complexity (number of communities), which

reflects many realistic scenarios.

Another important innovation is the exploitation of the Pólya urn scheme properties

in the context of MFM to develop a Gibbs sampler with K marginalized out. In doing

so, it is possible to avoid using the reversible jump MCMC algorithm (Green 1995),

which is more difficult to implement. The ultimate result is an efficient Gibbs sampler to

obtain the posterior distributions of interest, namely, those of z and B.

It is worth noticing that the exploitation of the Pólya urn scheme properties is not strictly

dependent on the choice of the pmf ofK, but specific properties of this prior distribution
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can positively affect the effectiveness of the Pólya urn scheme in the Gibbs sampler. In

general, the scheme aligns with distributions that allow for unbounded number of cate-

gories, but it can work with any pmf by adjusting the probability of forming new clusters

based on the probability mass not yet allocated to existing clusters.

The advantage of using the SBM-MFM model and the Gibbs Sampler above comes

from the fact that it enables the possibility to consistently estimate K even when the

sample is very large (as if it is infinite), while other models are able to estimate with a

certain degree of uncertainty the number of communities mainly for a finite sample.

This capability stems from a nuanced understanding and utilization of the relationship

between the posterior probabilities of the cluster assignments, z, and the number of

clusters,K. In the SBM-MFM model, the asymptotic behavior of the posterior probabil-

ity of z, is leveraged to inform the estimation ofK. Specifically, this aspect is expressed

by observing that both the posterior distributions of z andK tends to concentrate around

the respective true values as N diverges. For z this implies that Pr(z = z0|Y ) → 1 as

N → ∞, where z0 is the true underlying configuration. Similarly, Pr(K = K0|Y ) → 1

as N → ∞, where K0 is the true number of clusters. The the Gibbs sampler ensures a

mutual reinforcement in the estimation process of the two parameters:

• As the estimation of z becomes more accurate, the model improves its ability to

identify distinct clusters based on the connectivity patterns. This improved clarity

aids in more accurately estimates of K, as it becomes clearer how many distinct

clusters the nodes are truthfully divided into;

• An improved estimate of K provides the correct range of values that each cluster

assignment can take, guiding the estimation of z.
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3.3.1 Consistency with Fixed and Known K Communities

First, it is important to clarify what ”consistency” means in the context of SBM, espe-

cially within a Bayesian framework. In Bayesian statistics, consistency refers to the

property that as the size of the network N goes to ∞, the posterior distribution of the

estimated parameters (in this case, the block structure of the network) converges to

the true underlying parameters. This is a frequentist property of Bayesian procedures,

implying that the Bayesian posterior concentrates around the true parameter value as

more data is observed.

On the other hand, convergence in the context of an algorithm, such as MCMC (Markov

Chain Monte Carlo), refers to the algorithm’s ability to reach a stable solution as the

number of iterations increases. This is about the algorithm’s performance and stability,

not the accuracy of the solution in estimating the true underlying structure. When K is

assumed to be fixed and known, there are different approaches to detect and prove the

consistency of the results.

As presented in Nowicki et al.(2001), it is possible to compute some measure of ade-

quacy from the output of the Gibbs sampler. This process involves launching multiple

independent runs of the sampler, each with a different initialization, and compare the

values of the measures of interest. Convergence is assumed to be reached when a

clear block structure is indicated across multiple runs by these measures of adequacy.

When the sampler converges, the results are consistent. The measures of adequacy in

question are indeed the information contained in the observed relations, Iy, expressed

by the negative log-likelihood of the block structure and of the probability parameter

of observing the relations, and Hx: an index measuring to which extent the distribu-

tion of z defines a clear partition of nodes into classes. It is computed as a function of

θij = Pr(zi = zj|Y ), that is, the probability that two vertices i and j belong to the same

class:

Hx =
4

N(N − 1)

N∑
i,j=1

πij(1− πij)

It takes value between 0 and 1, and values close to 0 indicates that the partition is

estimated by the model with high confidence, while a value close to 1 shows a higher
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level of uncertainty as it is not clear whether i and j belongs to the same cluster or not.

However, this approach mainly ensures the convergence of the algorithm.

A more rigorous Bayesian approach is discussed in Geng et al. (2019), and it is based

on the assumption that there exist an underlying true data-generating mechanism re-

sponsible for the true cluster assignment vector z0.

To deal with typical issues of SBMs like the identifiability problem (Section 4) the model

employs a permutation-invariant loss function, specifically a modification of the Ham-

ming distance, which counts discrepancies between two vectors of the same length. To

simplify the discussion, it is possible focus on the case of homogeneous SBMs, charac-

terized by a matrixB with all equal diagonal entries (p) and all off-diagonal entries equal

(q). As discussed in the mentioned paper, as long as the prior probability of z givenK is

labelling invariant, so will be the posterior probability given Y , computed in accordance

with the Bayes theorem. For this reason, a logical choice for the prior distribution given

K is a Dirichlet-multinomial, with the probability vector following a symmetric Dirichlet

distribution.

By leveraging common properties of homogeneous SBMs, it is possible to define an

upper bound for the Bayes risk of their model, defined as the expected value of the

permutation-invariant Hamming distance between the posterior cluster assignments z

and the true partition z0:

E[d(z, z0)|Y ] ≤ exp

{
−CND(p0, q0)

K

}

where d(z, z0) is the permutation-invariant Hamming distance between the true config-

uration z0 and the configuration z sampled from the model, C is a constant which does

not depend on the other factors, D(p0, q0) is a relation between the true edge proba-

bilities p0 and q0 (respectively, the within and between groups edge probabilities) such

that
ND(p0,q0)

K
→ ∞ as N → ∞. The bound formulated above decreases exponentially

to 0 as N diverges, implying that the marginal posterior distribution of the cluster mem-

bership almost surely concentrates on the true distribution at an exponential rate as
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number of nodes increases:

Π[〈z〉 = 〈z0〉|Y ] ≥ 1− exp

{
−CND(p0, q0)

K

}
almost surely as N → ∞

whereΠ[z|Y ] is the posterior probability of z, and 〈z〉 indicates all possible permutations

of a given z. This result shows that the estimated block membership z is consistent by

the definition of consistency in a Bayesian framework.

Another metric for evaluating clustering accuracy is the Rand Index (Rand, 1971), which

computes the ratio of the node pairs which are consistently partitioned in the true con-

figuration and the modelled one to the total number of possible node pairs in a graph

withN nodes. As a result, the Rand Index is a number between 0 and 1, and the closer

it is to 1, the more the two partitions are similar.

The consistency results defined in Geng et al. (2019) are more robust than those pre-

sented in Nowicki et al. (2001), as the latter bases the consistency of the model’s re-

sults exclusively on the convergence of the MCMC algorithm, contrasting with the more

comprehensive Bayesian approach that incorporates advanced probabilistic concepts

proposed in the other paper.

3.3.2 Consistency with Unknown K Communities

When extending the discussion to scenarios whereK is unknown and subject to a prior

distribution, the challenge intensifies significantly. This issue forms a central debate in

the realm of mixture models and stochastic block modeling, focusing on the feasibility

of accurately identifying the true values of K and z0.

A simplified scenario where K adheres to a probability mass function (p.m.f.) defined

solely over {2, 3} allows for a more tangible exploration of these challenges. Within

the framework of the SBM-MFM model, it has been demonstrated that it is feasible to

adjust an initial estimate ofK towards its true value, thereby showcasing an instance of

model-selection consistency. This concept pertains to the capability of a statistical ap-

proach to accurately select the optimal model from a spectrum of potential candidates,
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even when the initial predictions deviate from reality.

In contrast, the broader scenario, where K is distributed according to a p.m.f. over

the set {1, 2,…}, necessitates imposing an upper limit on the possible number of com-

munities. This requirement emerges from the computational demand associated with

reconciling the true number of communities K against every possible estimate. Such

a process, involving comparisons across various configurations of estimated and ac-

tual values of K, imposes a significant computational burden. The SBM-MFM model’s

approach to this challenge involves sophisticated statistical techniques that aim to bal-

ance the accuracy of cluster recovery with the practicalities of computational resource

limitations.

This nuanced exploration reveals the inherent complexities in achieving model con-

sistency within SBMs, especially under conditions of uncertain cluster numbers. Geng

et al. (2019) contribute to this ongoing discussion by proposing methodologies that,

while computationally intensive, offer pathways to more accurate and consistent clus-

ter identification in the face of uncertainty about K.

In summary, consistency in SBM under both fixed and unknown K scenarios requires

rigorous methods to ensure that the posterior distributions of cluster memberships and

the number of clusters accurately reflect the true underlying structure as the network

size grows. This approach contrasts with merely achieving convergence of an algo-

rithm, which, while necessary, does not alone guarantee the recovery of the true block

structure.
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4 PROBLEMS AND LIMITATIONS OF SBMs

4.1 Identifiability Issue

A recurrent challenge in SBMs is the so-called identifiability, that is, to uniquely deter-

mine the labels associated to the blocks estimated given the observed network. In fact,

SBMs often present the so called label-switching problem, where different permutations

of the labels associated to the clusters result in the same likelihood given the observed

data and estimated parameters.

A direct implication of this problem is that there exist multiple distinct configurations that

the observed data can generate without any loss in fit quality. The main consequence

of the non-identifiability issue is the lack of interpretability of the results: the model does

not provide a rigorous and distinct description of the communities detected, leading to

uncertainty or potentially erroneous conclusions about what the output actually repre-

sent. This issue is also connected to the estimation via algorithms: the same network

may lead to different community structures depending on the random seed of the algo-

rithm, since most of the estimation processes uses stochastic procedures.

The identifiability problem becomes even more evident when the community structure

is not too evident, or the boundaries between communities is not clear. For this reason,

the MMB model explained in Section 3.2 is a clear example of this scenario: allowing

for a more flexible model where each node may belong to different communities de-

pending on who it is interacting with trades off the more realistic representation of how

networks are in real world and an increasing vulnerability to the identifiability problem.

Although it is impossible to completely avoid this issue, there are several approaches

that can help mitigate it in SBMs. First of all, the inclusion of metadata and prior knowl-

edge about the possible community labels can help distinguish otherwise symmetric

solutions. Another possibility is to use the estimated block membership after fitting the

model as input in relabeling algorithms to align labels across different model fits. This

approach is called ”post-hoc analysis” and is particularly useful when consistency of

the cluster assignments is the final goal of the study.
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4.2 Other Known Problems

4.2.1 Computational Complexity

The estimation processes used in SBMs, as seen in the previous sections, often involve

the evaluation of likelihood functions and numerous iterations using for loops. When

the input size, that is, the size of the network to analyse, increases, the computational

complexity increases, leading to possible obstacles in the estimation process if the

computational power is not enough. This issue is very common since the majority of

the real-world networks usually involve large datasets.

A possible approach to solve the problem is to put significant effort in the improvement

of the scalability of the process, that is, to make the algorithm more efficient so that it

can deal with larger inputs. A stark example of this approach is the variational method

described in Section 3.2.2, although it often trades off accuracy for speed and may not

fully capture the complexity of the network structure.

4.2.2 Sensitivity to Model Specification

As already discussed in sections 3.3.1 and 3.3.2, the choice of the number of blocksK

is crucial in SBMs for determining consistency, and it dramatically influences the out-

come of the analysis. Choosing a too small K leads to underfitting, that is, the model

is not able of capturing significant structural details in the network; on the other hand,

picking a large value for K will increase the probability of overfitting, a phenomenon in

which the model captures the intrinsic noise in data as a significant structural element.

When a prior distribution for K is specified, as seen in the SBM-MFM model, the esti-

mation is still very sensitive to the range of values of K determined by the distribution.

In fact, it has been proved that it is computationally unachievable nowadays to consis-

tently estimate the true value of K following an unbounded prior distribution, and the

best results are obtained on priors over a very small set of values.

Some possible selection methods for K had already been mentioned, like BIC and

cross-validation. The main disadvantage of these methods is their computational in-

tensity, since they usually involve to valuate the model multiple times for each possible

value of K in a given interval and find the most suitable one according to some mea-
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sure of goodness-of-fit. Moreover, these techniques are not applicable to the so called

”dynamic networks”, datasets in which the structure and the interactions change over

time. Making the choice of K dynamic and adaptive over time series data (Rastelli et

al. 2018), meaning that both the true and estimated K are not fixed, but change over

time along with the interactions in the network, is one of the biggest challenges in the

field due to the time-consuming experimentation it requires. In this case,K takes value

in a set and can be estimated using the model selection techniques already presented.

Treating the case where K follows a prior distribution is too computationally expensive

for the reasons showed in section 3.3.2.
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5 REAL-DATA APPLICATION

To demonstrate the potential of Stochastic Block Models (SBMs), we implement a fre-

quentist version of the model in R and apply it to a real dataset. Our goal is to assess the

model’s goodness-of-fit and consistency in capturing the underlying network structures.

5.1 The war Dataset

The chosen dataset is part of the R library sbm and contains two networks extracted

from the Correlates of War website. The first network, known as ”belligerent” (Sarkees

et al., 2010), comprises 83 nodes representing countries. The edges between these

nodes indicate that there has been at least one war between the connected countries

during the years from 1816 to 2007. In SBM terms, this implies that Yij = 1 if and only

if country i and j have been at war with each other.

The second network is called ”alliance” (Gibler et al., 2009) and features 171 nodes.

Each node again represents a country, and edges denote the existence of at least one

formal alliance between the countries within the timeframe from 1816 to 2012.

It is noteworthy that the ”belligerent” network includes fewer nodes than the ”alliance”

network because countries that never entered a war within the specified period are ex-

cluded from the network. Moreover, both datasets contain states which may not exist

anymore: for instance, Bavaria, Baden and Wuerttemburg had been independent for

years in the past 2 centuries before being annexed to Germany.

The dataset includes additional attributes for each country. The ”power” attribute is

a measure of increasing military capability, while ”trade” reflects the intensity of trade

relationships between pairs of countries. However, for the purposes of this thesis, these

variables will not be included in the analysis. The focus will remain on the structural

properties of the networks, keeping the analysis straightforward and manageable.

Both networks are structured as igraph objects from the homonymous library, which

is a widely used method to represent and analyze networks in R. This format facilitates

the manipulation and visualization of complex network data and will be instrumental in

implementing and evaluating the SBM.
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5.2 Model Implementation

The implementation of the SBM in R will involve fitting the model to both the ”belligerent”

and ”alliance” networks separately to identify potential blocks or clusters of countries

that exhibit similar interaction patterns. The goal of the analysis is to understand the

geopolitical relationships and alliances by dividing the countries in groups which are

historically consistent, in the sense that the results obtained align with the actual his-

torical events and frameworks.

In particular, the results on the ”belligerent” network will focus on grouping the countries

in classes of belligerence: in each class we expect to observe countries which actually

took part to a similar number of wars, identifying those having a higher tendency to start

a conflict. This result can be a good indicator for understanding the main actors in future

wars. The analysis on the ”alliance” network aims at clustering countries in blocks that

may have a similar cultural, or geographical background, or that for historical reasons

ended up collaborating with each other for a significant amount of time.

5.2.1 Model Estimation & Evaluation

The estimation algorithm, based on the function estimateSimpleSBM of the sbm library,

is a variational EM algorithm similar to the one explained in Section 3.2.2, while the

model selection method for the most fitting number of clusters (the hyperparameter K)

is the Integrated Classification Likelihood (ICL). This method is used to evaluate the fit

of a model at different values for K while penalizing for complexity, effectively balanc-

ing the trade-off between model generalization and fitting to the data. This technique

is very similar to the Bayesian Information Criterion of Section 3.2.5, but with some

adjustments to address network models like SBMs. The likelihood L of observing a

clustering configuration z given the parameters, can be written as

L(z|Y,π, B) =
∏
i<j

BYij
zi,zj

(1−Bzi,zj)
Yij
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The ICL is defined as

ICL = logL(ẑ|Y, π̂, B̂)− λ

2
logN

where logL(ẑ|Y, π̂, B̂) is the log-likelihood of observing the configuration ẑ given the

parameters estimated by the model, N is the number of nodes, λ is the total number of

parameters of the model, hence being the sum of the number of elements present in B

and π. λ
2
logN is a penatly term subtracted to the estimated log-likelihood to penalize

too complex models, avoiding overfitting. The ICL is computed for different values of

K and the one maximizing it is selected as the most suitable number of clusters.

5.3 Results on the Alliance Network

The model identified 11 blocks, reflecting a nuanced subdivision of alliances based on

historical, cultural, or possibly economic similarities among countries. Each block can

potentially represent a unique pattern of alliance formation that correlates with historical

events, such as wars, treaties, or economic agreements.

Figure 5: Visualization of the ”alliance” network with nodes colored by membership
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Below is a table containing the countries in each block with a consistent explanation of

the memberships.

Block Members Descriptions

1 United States, Canada These countries are part of North Amer-

ica, sharing similar economic policies

and defense strategies, often aligned in

international policies.

2 UK, France, Poland, Russia, Turkey Members have significant historical influ-

ence, playing crucial roles in European

and global geopolitics, often involved in

major wars and alliances.

3 Countries in Caribbean and Latin Amer-

ica

These nations share regional proximity

and have similar post-colonial develop-

ment paths, with many being part of trade

blocs like CARICOM or OAS.

4 Middle Eastern countries These countries share cultural, religious,

and historical links, often involved in simi-

lar geopolitical conflicts and economic or-

ganizations like OPEC.

5 Western European countries Highly integrated economically and politi-

cally, many are EU members with shared

values on democracy and economic poli-

cies.

6 West African countries Many of these countries share colonial

histories, economic challenges, and are

members of the Economic Community of

West African States.

7 Central and East African countries These nations often face similar devel-

opmental challenges and are part of re-

gional bodies like the East African Com-

munity.

8 Former Soviet republics Sharing a common post-Soviet transi-

tion history, these countries have politi-

cal, cultural, and economic ties.

9 Eastern European and some Asian coun-

tries

This group includes countries that expe-

rienced communist rule and have tran-

sitioned to market economies, sharing

a history of political upheaval and eco-

nomic transformation.

10 Diverse Asia-Pacific countries This group includes major economic

players with robust development trajec-

tories and significant influence in regional

politics.

11 Diverse group from multiple continents This eclectic group might share unique

bilateral relations, historical ties, or com-

mon interests in global forums like the

UN.

Table 1: Block Memberships and Descriptions
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The plot below displays the estimation process for values of K ranging from 1 to 17.

Notably, the points colored in red highlight the run for each each value ofK which gave

the highest ICL value. The concave curve delineated by these points indicates that the

ICL value increases until K = 11, and then starts decreasing, indicating 11 as the most

suitable number of clusters.

Figure 6: Integrated Completed Likelihood (ICL) values for different numbers of clusters (Q) in the

model selection and estimation process for the ”alliance” network

To better visualize the results obtained, the data frame of the network is joint with an

already built dataset storing the coordinates of a vast number of cities for each country

of the world. This dataset allows to plot a world map with the borders between countries

marked, and is combined with the block membership configuration.

Figure 7: World map divided in blocks using the estimated memberships and the world dataset in-

cluded in the library ggplot2. The countries in grey are not present in the ”alliance” network
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5.4 Results on the Belligerent Network

The number of blocks estimated by the algorithm on the ”belligerent” network is smaller

than on the ”alliance” one, with only 3 blocks identified. The main reason is that the

network in question has less than half the number of countries present in the ”alliance”

network, due to the fact that not all those countries were in war during the considered

time frame. A natural consequence of a smaller network is a more simplified model,

and probably less significant results. However, it is worth analysing the estimated block

configuration to confirm that the results obtained are still consistent from an historical

point of view.

Figure 8: ICL values for number of clusters ranging from 1 to 5

Figure 9: Network representation with colored block membership
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Block Members

1 United States of America, United Kingdom, France, Germany, Austria-Hungary,

Italy, Bulgaria, Russia, Turkey, Iraq, China, North Korea, Japan, Vietnam

2 Canada, Mexico, Colombia, Netherlands, Belgium, Spain, Portugal, Bavaria,

Baden, Wuerttemburg, Poland, Yugoslavia, Greece, Cyprus, Romania, Estonia,

Latvia, Finland, Norway, Denmark, Ethiopia, South Africa, Iran, Egypt, Syria,

Afghanistan, Mongolia, Taiwan, South Korea, India, Thailand, Cambodia, Laos, Re-

public of Vietnam, Philippines, Australia, New Zealand

3 Cuba, Guatemala, Honduras, El Salvador, Nicaragua, Ecuador, Peru, Brazil, Bo-

livia, Paraguay, Chile, Argentina, Hungary, Czechoslovakia, Lithuania, Armenia,

Azerbaijan, Chad, Democratic Republic of the Congo, Uganda, Tanzania, Soma-

lia, Eritrea, Angola, Morocco, Libya, Lebanon, Jordan, Israel, Saudi Arabia, Yemen

Arab Republic, Pakistan

Table 2: Block membership of the countries in the ”belligerent” network

• Group 1: it consists of major global powers and countries involved in the largest

conflicts in history. These countries are characterized bymore dense connections

with each other and with countries in other blocks, underlying the high bellicosity

of this group. The average number of countries with which a member in group 1

has engaged war with is approximately 14.57.

• Group 2: it comprises Western and European democracies, many of which are

military and economic alliances such as NATO and the EU. These countries

adopted less belligerent politics and the estimated average number of countries

engaged is 3.11.

• Group 3: this group mostly includes African, Latin American, and Middle East

countries. These countries were characterized by a similar pattern of internal

conflicts, revolutions, and were influenced by the Cold War politics. Despite the

internal conflicts, this group present the lowest level of bellicosity since the wars

were mainly local and did not involve many countries. The average number of

countries engaged in war is estimated to be 2.03.
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6 CONCLUSION

This thesis explores Stochastic Block Modeling, a powerful tool which can be used to

analyse and understand the complex structure of relational data and networks, which

have become an extremely important source of pivotal information. By deeply exam-

ining the mathematical and statistical fundamentals of SBMs, the purpose of this work

is to show the models’ ability to recover the latent block structures in large networks,

providing useful insights about the relationships between nodes.

The introduction of basic notation in SBMs and the general review of the statistical

concepts paved the way to more advanced techniques of mixture models, allowing for

enhanced flexibility and robustness, ending up in the realm of Bayesian nonparametric

statistics.

The core of the work is the literature review, which focuses on significant models that

led to a turning point in the application of SBMs. Nowicki and Snijders were the first

to build a model which produced consistent results using a Gibbs Sampling algorithm.

The Mixed Membership Block model (MMB) provided a more realistic analysis of net-

work structures by relaxing the strict assumption of a unique membership; moreover,

the introduction of advanced inference techniques, such as the Variational Bayes algo-

rithm, offers a computationally efficient alternative to traditional MCMC methods.

The MFM-SBM model introduces an additional layer of complexity by combining the

foundations of SBM with innovative Bayesian nonparametric techniques and by provid-

ing pivotal insights into consistency with both known and unknown number of clusters

K, setting the bases for a more rigorous framework to evaluate the performance of a

model.

Despite the profound capabilities of SBMs, the thesis recognizes their limitations and

presents the main challenges. The identifiability issue stands as the most significant

problem, but it is worth mentioning the significant efforts that have been made in im-

proving computational efficiency and sensitivity of the models. These challenges un-

derscore the need for continuous research in network analysis in order to exploit the

full potential of relational data.
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Finally, the thesis presented an original contribution to the realm of SBM by applying

the theoretical concepts presented to real-world data using a frequentist approach. The

results were analysed both from a statistical and an historical perspective, extensively

explaining how the results obtained from an estimation algorithm actually reflects real-

world facts. These findings highlight the potential of SBMs to provide useful insights

across various fields, from social sciences to biology.

Research is expected to continue in directions that include refining inference algo-

rithms, exploring models that integrate several node attributes in addition to network

interactions, and examining dynamic networks evolving over time.
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