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Abstract

The TP53 gene is often referred to as the ”guardian of the genome” due to its key role

in maintaining genomic stability and preventing the propagation of damaged DNA. It is

among the most commonly mutated genes in human cancers. Detecting its mutational

status is crucial for cancer diagnostics. In this thesis, we explore whether the TP53

mutation status can be predicted from single-cell transcriptomic data using graph-based

deep learning methods.

For our research, we used single-cell RNA sequencing data from 32 breast cancer cell

lines, for a total of 35,276 single-cell observations, merged with the mutation status data

of each cell line indicating whether the cell has undergone a mutation in TP53 or is a

wild type. Using these data, we construct gene co-expression networks based on Spear-

man correlation, transforming each single-cell observation into a gene-gene graph with

nodes representing genes and edges representing statistically significant co-expression be-

tween two genes. We then apply Graph Neural Network (GNNs), more specifically Graph

Convolutional Network (GCNs) and Graph Attention Network (GATs), to perform graph

classification and predict the TP53 mutation status of each single-cell. To better un-

derstand the impact of feature selection, throughout the full experiment we follow two

parallel preprocessing strategies: one statistically driven, selecting Highly Variable Genes

(HVGs), and the other biologically inspired, retaining only the genes known to be the

TP53 target genes.

Before applying graph-based models, we first trained XGBoost classifiers on bulk and

single-cell expression data to verify the presence of significative signal for predicting the

mutation of TP53. These models achieved, respectively, F1 scores of 0.88 and 0.99,

confirming the feasibility of the task. Once verified the presence of the signal, we verified

whether a graph approach could lead to interesting results. We tested various GNN

architectures and configurations exploring the effects of different design choices such as

batch correction, and regularization techniques. On the graphs built with the HVGs, the

GAT model with GraphNorm obtained the best performance, achieving an F1 score of

0.89. For the TP53 target genes graphs, the best model was the GAT combined with

ComBat batch correction. A final hyperparameter tuning using Optuna identified the

optimal values for different parameters such as number of hidden channels in the model,
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dropout rate, learning rate, weight decay for the L2-Regularization, number of attention

heads in the GAT, whether to apply loss weighting, and whether to include additional

layers. After this step, the best model was a GAT applied to ComBat-corrected TP53

target genes, achieving an F1 score of 0.998. This results is marginally better than the

XGBoost baseline (F1 = 0.995). While the performance gain is modest, the graph based

approach is able to capture gene–gene interactions, which can improve generalization to

more heterogeneous datasets and allow for more biologically interpretable insight.
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1 Introduction

The TP53 gene, encoding the tumor suppressor protein p53, is mutated in more than

50% of human cancers. Loss of p53 function undermines the cell’s ability to repair DNA

or halt the cell cycle, making TP53 a critical biomarker in oncology. For this reason, the

p53 protein is often called the ”guardian of the genome”, and the loss of its function due

to mutation often lead to cancer.

Traditional approaches to assess the TP53 status rely on bulk sequencing data which

collapse the expression of millions of cells into a single aggregate measurement. However,

tumors are notoriously heterogeneous, and even within a single cell line, individual cell

can differ dramatically in their transcriptomes. Single-cell RNA sequencing, also know as

scRNA-seq, has emerged in the last decade, offering a higher resolution for the expression

data. This allows not only to resolve the mentioned heterogeneity but also to profile

tens of thousands of individual transcriptomes in a single experiment. At the same time,

scRNA-seq data come with their own challenges: extreme sparsity (usually above 90%),

high dimensionality and pronounced batch effects. For this reason, a more careful and

rigorous preprocessing and downstream analysis is needed to treat them.

In parallel, graph based deep learning approaches, leveraging the so called Graph Neural

Networks (GNNs), have obtained success in many domains by allowing to explicitly model

relationships among entities. In the biology domain, GNNs are able to exploit not only

each expression level per gene but also their interactions and co-expression.

Recent studies have already explored the use of Graph Neural Networks in genomics.

For instance, Algabri et al., 2022 proposed scGENA, a framework to build co-expression

networks from single cell data to uncover biological mechanism. Li et al., 2025 offers an

in depth review of the current landscape of GNNs applied to single-cell data, highlighting

the potential of graph-based approaches to improve interpretability and performances

in classification tasks. However, few works have focused specifically on predicting the

mutation status of TP53 using single-cell data structured as graphs. Recent efforts have

explored the possibility of predicting TP53 mutation status from gene expression data

using machine learning techniques. More precisely, the work by Triantafyllidis et al.,

2023 show that the bulk transcriptomic data contain sufficient signal to uncover patterns
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associated with TP53 mutations. While their results are promising, they are based on bulk

RNA-seq. In this research, we build upon these results and ask whether such predictive

signal is present at the single-cell resolution and whether a graph-based approach can

be effective to detect it. To do that, we will apply Graph Neural Networks to gene co-

expression graphs constructed from single-cell RNA-seq data. This allows us to model

both the expression of individual genes and their relationships with each other. Our

expectation is that this approach will provide more accurate and biologically interpretable

predictions of the TP53 mutational status.
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2 Background

Since this research lies at the intersection of biology and machine learning, we now in-

troduce the necessary background to understand our methodology. The background is

structured into two parts: the first introduces the biological foundations necessary to

understand the context and significance of TP53 mutations. The second outlines the ma-

chine learning methods used, with a focus on graph-based approaches. The aim of this

section is to provide the reader with the fundamental biological and computational tools

to follow the experiment pipeline; not to provide a comprehensive, nor exhaustive, review

of the topics involved.

2.1 Biological Background

2.1.1 Quick Introduction to Biology

The central dogma of molecular biology explain how the flow of information works in a self

replicating organism. Genetic information is encoded in the DNA. The genetic information

is copied into RNA molecules in a process called transcription. Then, a process called

translation, convert them into proteins. Proteins are the biological entity which perform

all the function of the cell; including translation, transcription and DNA replication. The

real mechanism of life is much more complex but this model is good enough to give an

idea of how living organism operate. DNA is a polymer, which means that it is a molecule

composed of four different molecules called nucleotides (or bases). These four bases (A:

adenine, G:guanine, C:cytosine, T:thymine) can be chained together in an arbitrary order

along a sugar backbone, allowing the encoding of information. Usually, the chromosomes

of an organism consist of two chains that are twisted around each other in the well know

double-helix structure. The two strands are held together by chemical bonds between the

couple of complementary bases. Specifically, the four bases falls under two categories:

purines (A and G) and pyrimidines (C and T). The difference is due to their chemical

composition and is beyond the scope of this introduction, for us it is enough to know that

their chemical structure allows the pairing of purine A with pyrimidine T and of purine

G with pyrimidine C, and these bonds hold together the double-helix. RNA is a molecule

that is very similar to DNA with thymine (T) nucleotide changed to uracil (U). But the
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biggest difference is in its structure, which is single stranded and can fold onto itself. This

property is the key to many biological and structural functions of the RNA.

Figure 1: Illustration of the central dogma of molecular biology. Adapted from Learn
Genomics (2024).

2.1.2 Transcriptomics

Transcriptomics is the study of RNA transcripts produced by the genome under specific

conditions – collectively referred to as the transcriptome. It is key to highlight the differ-

ence between the transcriptome and the more well known genome. While the genome is

usually more stable across different cells of the same organism, the transcriptome usually

is more dynamic and reflects cellular responses. In transcriptomics, we look at the gene

expression at the transcript level to get insight into the regulatory mechanism that con-

trol cellular function. Transcriptomics is now a cornerstone of biomedical research, with

application ranging from cancer biology to drug discovery and personalized medicine. In

this research, transcriptomic data are used as a foundational layer to build co-expression

networks and predict the associated TP53 mutation status. In particular, the integration

of single-cell RNA sequencing data offers higher resolution into transcriptional variability

at the cellular level, enabling more precise modelling approaches.

2.1.3 Single-Cell RNA Sequencing

Modern sequencing technologies have revolutionized the way we analyse biological sys-

tem. Traditional DNA sequencing techniques, such as Sanger sequencing, were limited

in scalability. The introduction of the so called NGS (next generation sequencing) plat-
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forms enabled massively parallel sequencing, allowing researchers to read millions of reads.

Among the applications of NGS, RNA sequencing is the standard for transcriptome-wide

analysis. RNA sequencing was initially applied to bulk RNA extracted from cell popula-

tions. This provided an average expression profile, but was missing to represent cell-to-

cell heterogeneity. The development of single cell RNA sequencing (scRNAseq) enabled

transcriptomic profiling at the resolution of individual cells. This technique capture tran-

scriptional variability that would otherwise be undetectable in bulk measurements. In

this analysis, we leverage scRNAseq data to investigate the relationship between gene

expression patterns and TP53 mutational status at single cell level.

Figure 2: Single cell RNA-seq reveals cellular heterogeneity that is masked by bulk RNA-
seq methods. 10x Genomics (2024)

2.1.4 The TP53 Gene And Its Role

The TP53 gene encodes the protein p53, a tumor suppressor protein that plays a central

role in maintaining genomic stability. The p53 is often referred to as the “guardian of

the genome” due to its activation in response to cellular stresses such as DNA damage,

hypoxia or oncogene activation. Once activated, p53 induce cell cycle arrest preventing

the propagation of damaged cells. Mutations in TP53 are among the most common

alterations observed in human cancers, found in over 50% of human primary tumors

(Chen et al., 2022). These mutations often results in loss of p53 function, allowing cells

with genomic instability to avoid cell death and continue to proliferate. Given its role

in tumor suppression, tp53 has been extensively studied as a biomarker and therapeutic

target. In this research are investigated how transcriptomic profiles represented in gene
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co-expression network derived from single cell RNA sequencing can be used to predict

TP53 mutational status of individual cells.

2.1.5 Gene Co-Expression Networks

Gene co-expression network are mathematical graph representations of relationships be-

tween genes based on their expression profiles across a set of samples. In these networks,

nodes represent genes, and weighted undirected edges represent the level of correlation

between the expression level of the two genes. The underlying idea is that genes with

similar expression patterns are likely to be related, co-regulated, or part of the same biolog-

ical pathways. Constructing co-expression networks usually involves computing pairwise

Spearman or Pearson correlation coefficients for each pair of gene. A threshold is then

applied based on both correlation and p-values to retain only significant correlation while

controlling for false positives. In the context of single-cell data, constructing such net-

works is usually more challenging due to increased sparsity and noise, but it is still a great

structure to reveal biological signal (Algabri et al., 2022). In this thesis, co-expression

graphs serve as the basis for constructing input graphs used by the graph neural networks

models to predict TP53 mutation status.

2.2 Machine Learning Background

2.2.1 Graph Theory

Graph theory is a branch of discrete mathematics that studies the properties of graphs.

A graph can be defined as an abstract representation of pairwise relationship between

different objects. Graph theory has a wide range of applications and it often provides a

useful framework for modelling interconnected systems in many fields such as computer

science, physics and biology. Mathematically, a graph G = (V, E) is defined as a structure

composed of a set of nodes (or vertices) V and a set of edges E ⊆ V × V which defines

pairwise relationships between nodes.

In the context of biological science, graphs are often used to model gene regulatory inter-

actions or co-expression relationships. Given a gene expression matrix X ∈ Rn×d where n

is the number of samples and d is the number of genes, one can construct a graph either

at the level of samples (cell-cell graphs and the ML problem is formulated as a node
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classification problem) or at the level of features (gene-gene graphs and the ML problem

is now formulated as a graph classification problem). In this work, we focus on gene-gene

co-expression graphs, performing therefore a graph classification with our model. More

precisely, in our graphs each node vi ∈ V represent a gene, each edge ei ∈ E represent,

if present, the significant correlation between the two genes obtained by their expression

profiles across the cells.

Each node vi ∈ V can be associated with a feature vector xi ∈ Rf , where f denotes the

number of features per node. These features are allocated in a feature matrix X ∈ R|V |×f ,

where each row corresponds to a node’s features. Edges in the graph can be represented

using an adjacency matrix A ∈ Rd×d, where Aij represents the weight of the edge between

gene i and j. For unweighted graphs, Aij ∈ {0, 1}, while for weighted graphs, Aij is a

continuous value, usually the Pearson or Spearman correlation coefficient.

Graph based representations are particularly useful in machine learning models, especially

in those problems in which standard vectorial approaches fail to fully capture relationships

between features. The graphs above defined serve as a foundation for applying Graph

Neural Networks, which learn from both node features and graph topology to perform

tasks such as classification and link prediction.

2.2.2 Graph representation for single-cell transcriptomic data

To apply GNNs to transcriptomic data, we first have to define how graphs are constructed

from raw gene expression matrices. From this data, we build gene-gene co-expression

graphs. To quantify the correlation between genes, the Spearman correlation coefficient

is usually used. This is done because Spearman is more robust to non-normality and

outliers than Pearson correlation. Briefly, it is computed by ranking the expression values

of each gene across cells and then applying Pearson to these ranks. A threshold is then

applied to both the correlation coefficients and the corresponding p-values to retain only

statistically significant edges. For the p-value threshold, it is common to apply the Bon-

ferroni correction to control the family-wise error rate by dividing the desired significance

level α by the number of tests performed. In our case becomes

p = α(
n
2

)
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where p is the adjusted significance threshold obtained for the p-values, α is the signifi-

cance level and
(

n
2

)
corresponds to the number of pairwise tests performed with n genes.

One challenge in graph construction is the presence of batch effect. Batch effect can be

defined as a source of non-biological variation introduced when different samples in the

dataset are processed in different experimental groups, this lead to systematic differences

in the data not related to biological variables. If not corrected, this can distort correlation

patterns and introduce biases in the graphs. Many algorithms can be applied to correct

for this behavior. Two of the most widely used in transcriptomics are ComBat (Johnson

et al., 2006) and Harmony (Korsunsky et al., 2019) with their implementation in Scanpy,

both known for their robustness and computational efficiency.

The final output is a weighted adjacency matrix A ∈ Rd×d, where each entry Aij reflects

the strength of association between gene i and gene j. This matrix defines the edge

structure for each single-cell graph used as input to the GNN. Together with the node

feature matrix Xi ∈ Rd×f , where Xi corresponds to the expression values of the i-th cell,

this defines the full input graphs Gi = (Xi, A). Each graph Gi can be seen as an individual

observation in the graph classification task. Note that this construction strategy is just

one of the many, different approaches may apply different strategies. For a more complete

review of GNN approaches for single-cell omics see Li et al. (2025).

2.2.3 Graph structure modeling in biology

Modeling single-cell transcriptimic data as graphs present challenges that are less common

in other domains. Let’s consider a graph Gi = (Xi, A) associated with a single cell i, where

Xi ∈ Rd×f is the feature (or gene expression) matrix. and A ∈ Rd×d is the adjacency

matrix.

A first challenge is handling the sparsity of scRNA-seq data. Sparsity refers to the number

of zero entries in the gene expression matrix X, which arises because most genes are not

expressed in most single cells. Sparsity levels exceeding 90% are common, while such

values would be considered high in other contexts, they are expected here. In practice,

high sparsity can lead to unreliable edge weights in the adjacency matrix and disconnected

components in the graphs, resulting in a worse model performance.

Moreover, the high dimensionality of gene expression profiles can be a problem. Feature
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selection is often performed to retain only a subset of genes. However, defining the optimal

subset of features is a non-trivial optimization problem. Feature selection strategies can be

either algorithmic or based on prior biological knowledge. An example of an algorithmic

approach is to identify the Highly Variable Genes (HVGs), defined as the genes with the

greatest variance across cells. Alternatively, one may leverage known biological pathways,

for example by selecting only the TP53 target genes identified in Fischer (2017).

2.2.4 Introduction to GNNs

Graph Neural Networks (GNNs) are a family of deep learning models designed to operate

directly on graph-structured data. Unlike traditional Neural Networks which assume input

data to lie in the Euclidean space (for example 2D grids like images or 1D sequences like

texts), GNNs apply neural networks operations to the graphs domain, incorporating both

node-level features and the underlying topology of the graph into the learning process.

Figure 3: Left: image in Euclidean space. Right: graph in non-Euclidean space. Zhou
et al., 2020

To give the reader a high level glimpse of how GNNs operates, we can describe them as

iterative message passing architectures: at each layer, every node updates its representa-

tion by aggregating information from its neighbors. The generic update rule in a GNN is

the following:

h
(l)
i = f (l)(h(l−1)

i , h
(l−1)
j : j ∈ N (i))

where h
(l)
i denotes the representation of node i at layer l, and N(i) indicates the set

of neighbors of node i. The function f (l) aggregates the features of the neighbors and

combines them with the current node representation.
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2.2.5 GCNs and GATs

Different type of GNNs architecture implements different f (l). Graph Convolutional Net-

works (GCNs) generalize Convolutional Neural Networks (CNNs) to work in the graph

domain. GCNs apply convolutional operations to nodes and their neighbors, aggregating

features from neighboring nodes to update a node’s representation. The forward propa-

gation rule in a GCN is:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l))

Here, Ã = A + I denotes the adjacency matrix of the graph after adding self loops

through the addition of the Identity matrix I. This ensures that each nodes includes its

own features during message passing. D̃ is the degree matrix, in which each diagonal entry

D̃ii indicates the degree of the node i (that is the sum of edge weights connected to node

i). H(l) is the matrix containing the features embedding of all nodes at layer l, where each

row corresponds to a node. W (l) is the weight matrix that transforms the input features,

and σ is the non linear activation function applied at the end of the aggregation step.

Another popular variant is the Graph Attention Network (GATs), which leverages the at-

tention mechanism to improve how GNNs aggregate information from neighbors. Instead

of treating all neighbors equally, GATs assign different attention weights to each neighbor

based on its importance. This allows GATs to focus on the most relevant parts of the

graphs. In a GAT layer, the propagation rule is

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W (l)h

(l)
j



where α
(l)
ij is the attention coefficient between node i and node j, computed as:

α
(l)
ij = softmaxj

(
LeakyReLU

(
a⊤

[
W (l)h

(l)
i ∥ W (l)h

(l)
j

]))

Here, a is the learnable weight vector, ∥ denotes vector concatenation and W (l) is a shared

linear transformation.

By stacking multiple GNN layers, each node can incorporate information from increasingly

distant neighbors; improving as a consequence context-awareness of the model. This
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information can be used for tasks such as node classification or, as in our case, graph

classification. (Zhou et al., 2020)

2.2.6 Typical GNNs architecture

A common GNNs architecture pipeline begins with a series of GNN layers responsible for

message passing and local aggregation. To improve generalization and reduce overfitting,

dropout and normalization layers are inserted between message passing layers. Dropout

layers simply deactivates a fraction of node features during training to prevent the model

from over-relying on specific input patterns. Normalization layers can have different

nature. Two popular choices are BatchNorm and GraphNorm. BatchNorm normalizes

node embeddings across a mini-batch of graphs, while GraphNorm normalizes at the

individual graph level, making it more suitable for graph-level tasks. Batch normalization

operates by standardazing features across all nodes in a batch. For a feature dimension

k, it computes

x̂
(k)
i = x

(k)
i − µ

(k)
B√

σ
(k)2
B + ϵ

where µ
(k)
B and σ

(k)2
B are the mean and variance computed across the entire batch for

feature k. Graph Normalization, instead, computes statistics at the individual graphs

level. Given a graph G = (V, E) and node feature x(k)
v , it computes:

x̂(k)
v = x(k)

v − µ
(k)
G√

σ
(k)2
G + ϵ

After each normalization step, we can find a non-linear activation function, usually ReLU,

followed by dropout. Convolution, normalization, activation and dropout together forms

the typical GNN layer which is repeated multiple times in the full architecture. At the end

of the last message passing layer, a pooling layer is applied. A common method is to use

global mean pooling, which computes the average of node embeddings across the entire

graph. This graph representation is then passed to one or more fully connected layers to

perform the final classification task on the final embeddings. These embeddings integrate

both the expression profile of each gene and its topological role in the co-expression graph.
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1. GNN Layer

2. Normaliza-
tion Layer

3. ReLU + Dropout

4. Dropout Layer

5. Pooling Layer

6. Fully Con-
nected Layer

Input Graph Data

Output Result

Figure 4: Schematic example of a minimal Graph Neural Network (GNN) architecture
showing the core layers of a basic graph-based model.
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3 Experiment

3.1 Data

Before starting to talk about the experiment, it is important to spend some time on

the data used. To build our final CSV file used in the analysis, we had to merge the

information coming from two different datasets: one for the expression data and one for

the mutation data.

The first is the scRNA-seq publicly available dataset Single Cell Breast Cancer Cell-

line Atlas (Gambardella, 2022), published on Figshare and available at https://doi.org/

10.6084/m9.figshare.15022698.v2. It consists of raw UMI counts of 35,276 single cells de-

rived from 32 human breast cancer cell lines, generated using the 10x Genomics Chromium

platform. Each matrix provides gene-level expression counts per individual cell, enabling

high-resolution transcriptional profiling. The data are unfiltered and unnormalized, pre-

serving the original unique molecular identifier (UMI) counts for each gene-cell pair. This

format is optimal to conduct preprocessing, quality control, and analytical workflows

using pipelines such as Scanpy. We will go deeper into this in the next pages. The mu-

tation data are obtained from the publicly available dataset The TP53 Database (R21,

Jan 2025): https://tp53.cancer.gov. For a full description of the database structure and

transition, see de Andrade et al. (2022). This dataset provides comprehensive information

on the TP53 mutation status across a wide array of human cancer cell lines. Each entry

includes detailed annotations such as cell line identifiers and genetic alterations, including

TP53 mutation specifics. We then merged the information from the two datasets based

on the cell line IDs. More precisely, for almost the totality of the single cells (to be more

precise, 90.24%) in the expression data, we were able to find the respective cell lines in

the mutation data and obtain the information on whether that specific single cell was

mutated or not. At this stage, our dataset consisted of 31,833 single-cell observations and

47,096 genes. The bulk RNA-seq expression profiles are obtained from the Cancer Cell

Line Encyclopedia (CCLE), specifically the DepMap 22q2 release (DepMap, 2022). The

list of TP53 target genes used for biologically driven feature selection was obtained from

Fisher’s curated list of p53 targets (Fischer, 2017), which can be found at the following

link https://tp53.cancer.gov/target genes.
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3.2 Preliminary Checks

Before conducting an in-depth analysis in a graph-based approach, we performed some

preliminary experiments to verify whether gene expression data contains detectable signal

predictive of TP53 mutation status.

The first experiment consisted in training a basic XGBoost classifier on the bulk RNA-

seq gene expression data, using TP53 mutation status as the target variable. The model

achieves an accuracy of 0.85 and a F1-score of 0.88. With these results we can conclude

that the bulk data contains a strong predictive singal for TP53 mutation status. These

findings align with the one presented in Triantafyllidis et al. (2023).

We then checked if this signal is also present at a single-resolution. We trained another

XGBoost classifier, this time on the single-cell expression data, achieving an accuracy of

0.99 and an F1-score of 0.99. These results confirms the preservation of the mutational

signal in the single-cell data.

These findings support the hypothesis that expression profiles carry relevant information

about TP53 mutation status, both at bulk and single-cell resolution. This motivates the

use of more advanced models which can incorporate both individual gene expression and

the relational structure among these genes.

In the next pages, we will evaluate the performance of a model using mainly the F1-score,

more suitable for slighly imbalanced datasets like ours. This metric score is computed as

follows:

F1 = 2 · Precision · Recall
Precision + Recall

where precision and recall are computed as follows:

Precision = TP
TP + FP

Recall = TP
TP + FN

with TP being the number of True Positives, FP the number of False Positives and FN

the number of False Negatives.
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3.3 Preprocessing and EDA

The first step in the analysis was to perform some exploratory data analysis to get to know

the data better and to prepare them to be fed to the model. The majority of the following

operations are performed leveraging the Python library scanpy presented in Wolf et al.

(2018).

3.3.1 Gene Symbols mapping

The 10x Genomics expression matrix retrieved from the data used Ensembl ID to identify

the genes; to ensure interpretability and consistency with external annotations, a gene

symbol mapping step was required. To achieve this, we query the MyGene database using

the mygene python library (Xin et al., 2016). Although most of the Ensembl IDs were

successfully converted, 928 genes had no corresponding symbol and 22 appeared more

than once due to duplicates or annotation inconsistencies. This step enabled a clearer

biological interpretation of downstream analysis.

3.3.2 Single-Cell Mutation Mapping

To associate each single cell with its corresponding TP53 mutation status, we performed

a matching operation between the expression dataset and the mutation one. To do that,

we first ensured the consistency between the two datasets by cleaning and standardizing

cell line identifiers. The mutation status was then added to the expression data. Cells

with missing matching information were excluded from the dataset. This led to removing

4,562 cells, leaving 30,714 single cells which corresponds to the 87% of our original dataset.

We report here the cell lines found in the expression data with a missing match in the

mutation data: ’HS578T’ ’MCF12A’ ’MX1’ ’MDAMB453’.

3.3.3 Sparsity

The gene expression matrix presented a high level of sparsity. The number of non-zero

entries was only 100,804,217 out of 1,446,506,544. The corresponding sparsity is 93.03%.

As said before, although sparse, this distribution is expected for scRNAseq data and does

not indicate technical errors. We took into account this level of sparsity when designing

our downstream analyses.
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3.3.4 Quality Control Plots

To assess the initial quality of the single-cell dataset, we created some visualizations

plotting some key metrics across all cells using violin plots (Figure 5) and scatter plots

(Figure 6). In particular, we focused on two quality control metrics: the number of genes

detected per cell and the total number of transcript counts, that is the total UMI count

per cell. The violin plots reveal the distribution and helps in the visual detection of

outliers. Cell with extremely low or extremely high total counts may indicate respectively

damaged cells or doublets. To sum up we plotted a scatter plot of the two dimensions

versus each other, that is “n genes by count” and “total counts” to support the detection

of cells with abnormal transcription profiles. These plot were used as a diagnostic tool

to confirm overall quality of the data before normalization and feature selection. As a

further step of quality assessment we applied the Scrublet algorithm (Wolock et al., 2019)

directly on the raw expression data. In our dataset, no doublets were detected suggesting

a clear single cell capture. As a consequence no filtering based on the doublet prediction

was applied.

Figure 5: Left: Violin plots of the total number of genes detected per cell Right: total
number of transcript counts

3.3.5 Normalization

Before downstream analysis, the raw count matrix was normalized to account for varia-

tions in sequencing depth between samples. First a Counts Per Million (CPM) normal-
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Figure 6: Scatter Plot of total number of genes detected per cell vs total number of
transcript counts

ization was applied. The CPM normalization scales the raw read counts for a gene by the

total number of reads in a sample, multiplied by a million. Subsequently, a logarithmic

transformation was applied to stabilize variance and approximate a normal distribution.

This normalization step is key to reduce the impact of highly expressed genes and to allow

for more robust dimensionality reduction.

3.3.6 Highly Variable Genes

Feature selection was performed to retain only the most informative genes. We identified

the highly variable genes (HVGs) across the data features. This step reduces the noise

introduced by non-informative genes, which can obscure biological signal. Gene were

filtered based on their mean expression and dispersion, applying a threshold of a minimum

mean of 0.0125, a maximal mean of 3 and a minimal dispersion of 0.5. This procedure

allowed us to reduce our number of considered genes from 47,096 to 2,071. The selected

HVG were then visualized in a mean dispersion plot (Figure 7), showing the HGVs with

respect to the others.

3.3.7 Principal Component Analysis

We then applied Principal Component Analysis (PCA) to the subset of HVGs we previ-

ously identified. This is done to reduce the dataset dimensionality while preserving its

most significant sources of variation. To investigate how many principal components were

needed, some visualizations were plotted. The first graph illustrates how much variance
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Figure 7: Mean Variance Plot for HVGs

is explained by each principal component (ranked in decreasing order of the variance ex-

plained). A good rule of thumb in these graphs is to identify an elbow point, that is when

the slope of the variance explained changes significantly. In Figure 8 there is a significant

change of slope around the 50th component. However we can see from our Cumulative

Explained Variance plot (Figure 9) that this would explain less than the 50% of the vari-

ance of our data which is too little. This pushed us to increase the number of principal

component to 700, reaching a total explained variance of 80%.

Figure 8: PCA variance ratio plot Figure 9: PCA cumulative explained vari-
ance

3.3.8 Uniform Manifold Approximation and Projection

To visualize the global structure of the dataset, we computed a neighbourhood graph on

the PCA-transformed space and applied a Uniform Manifold Approximation and Projec-

tion (UMAP). The graph you can see below (Figure 10) are colored using two different

criteria. The first one assign different colors to different cell lines. The second graphs

assign different colors to different mutation status. In blue are the mutated cell lines,
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and in orange the non-mutated or wild type. From the left plot the clusters are sepa-

rated and correspond to individual cell lines, indicating a strong batch effect due to cell

line. In our further analysis, we will be aware of this as it may bias the model to learn

cell line differences rather than mutation status. In the right plot, we observe that mu-

tated and wild-type cells are well-separated within individual cluster. This suggest that

TP53 mutation has a detectable impact on gene expression, although it does not override

the dominant effect of cell line identity. We will take this into account in our modeling

strategy.

Figure 10: Left: UMAP colored by cell lines Right: UMAP colored by cell status

3.3.9 Final check on Quality Control Plots

As a final step, we compared the quality control plots before and after the filtering and

transformation steps. By looking at the violin plots in Figure 11a we observe significantly

more symmetric distributions. Similarly, the scatter plot in Figure 11b appeared more

compact, indicating an improvement in the uniformity of the dataset. This confirms the

effectiveness of our preprocessing pipeline to contribute to a cleaner and more biologically

significant representation of our data. Consequently, for our subsequent analysis we are

going to use the reduced and transformed data produced by this pipeline.

3.4 Analysis of TP53 Target Genes

In addition to our preprocessing pipeline based on Higly Variable Genes, we investigated

whether a biologically driven feature selection could be a useful alternative. To be more

precise, we explored the use of TP53 target genes derived from the list published by

Fischer (2017). From the expression data, we derived a pairwise correlation matrix using

only this set of target genes and compared that to the one built using the HVGs set, both

at single-cell and bulk resolution. We analyzed the sparsity and plotted the histogram of
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(a) Violin plots of genes per cell and total
counts after preprocessing.

(b) Scatter plot: genes per cell vs. total counts
after preprocessing.

Figure 11: Quality-control metrics after preprocessing of single-cell data.

the correlation values in the two matrices to compare the distributions (Figure 12).

Our initial hypothesis was that the TP53 target genes would exhibit a different correla-

tion profile, with a distribution shifted to the right due to stronger positive co-expression

among genes regulated by common transcription factor. However, as shown by the

histograms, the two distribution of correlation values does not substantially differ. A

Komolgorov-Smirnov test confirms that the two distributions are significantly different,

yet the difference is much less than expected.

Despite this smaller-than-expected shift, we will further investigate both feature selection

strategies as two parallel pipelines throughout the entire model construction and compar-

ison phases. This will allow us to assess the impacts of each feature selection method on

the model performance.

(a) Single-cell data (b) Bulk data

Figure 12: Distribution of gene–gene correlation values for HVG (blue) and TP53 targets
(orange), computed on single-cell and bulk data.
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3.5 Network Construction

In this section we present the pipeline to transform the preprocessed single-cell expression

data into input graphs for the GNN.

The starting point is therefore the tabular structured expression matrix, consisting of

30,714 cells per 2,071 genes for the HVG data and 30,714 cells per only 139 genes for the

TP53 target data. Each row represents the expression profile of a single cell across all

selected genes.

3.5.1 Train and Test split

As a first step, the expression matrix was randomly split into training and test subsets,

using the common rule of 80% of the cells assigned to the train set and 20% to the test.

3.5.2 Correlation matrix

After the split, we computed a gene-gene correlation matrix using the training set only.

By doing this, we prevent any information from the test set from leaking into the input

data. This is important to avoid data leakage problem. The matrix is built such that

it captures pairwise gene relationships by calculating the Spearman correlation between

each pair of genes across all training cells. To retain only meaningful connection and

filter out noise, we applied a correlation threshold of 0.2 and a p-value threshold of 0.05

Bonferroni corrected. Values below this threshold were set to 0.

3.5.3 Graph Construction

Each individual cell was represented as a graph Gi = (Xi, A) where Xi ∈ Rd×1 is the node

feature matrix containing the expression value of the d genes for cell i, and A ∈ Rd×d is

the adjacency matrix. It is important to note that the adjacency matrix is pre-computed

and shared across all observations, therefore all graphs share the same topology but differ

in the node features based on their expression level.

Graphs were stored in PyTorch Geometric objects and written to disk in batches of 500

graphs to ensure scalability (Fey & Lenssen, 2019). The final train and test sets contain

24,571 and 6,143 graphs, respectively. Each graph has 2,071 nodes and 157,158 edges

when using HVGs and 138 nodes and 846 when using TP53 target genes.
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3.6 Model Architectures

Two distinct Graph Neural Network architectures were implemented: A Graph Convolu-

tional Network (GCN) and a Graph Attention Network (GAT). Each model received the

same input graphs described in the previous sections.

The general architecture of both GCN and GAT consists of:

• Two graph convolutional or attention layers depending on the model type

• A normalization layer after each message-passing step (either BatchNorm or Graph-

Norm)

• ReLU activation and dropout to improve generalization

• A global mean pooling layer to compress node-level information into a single graph-

level embedding

• A final fully connected (linear) layer for binary classification

Each of these component has a specific role. The message passing layers take care of

updating the node embeddings based on the neighbors information. Normalization and

dropout are useful in preventing overfitting. Finally, the pooling layer aggregates the

graph representation into a vector, which will then be passed to the fully connected

layer to perform classification. Both models were implemented in Pytorch Geometric in a

modular design to allow for comparison of different configurations. Additional information

about the different architectural and training modifications explored will be discussed in

the next section.

3.7 Model Comparison

To evaluate the performance of the different models, for each GNN architecture, we started

with a baseline two-layer implementation, followed by various modifications to explore how

different design choices impact classification performances. These variations included:

• L2 Regularization (AdamW): applied weight decay regularization using the

AdamW optimizer to mitigate overfitting.

• Batch correction with ComBat: used data preprocessed with the scanpy imple-
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mentation of ComBat for batch effect correction (Johnson et al., 2006).

• Batch correction with Harmony: used data preprocessed with the scanpy im-

plementation of Harmony for batch effect correction (Korsunsky et al., 2019).

• GraphNorm instead of BatchNorm: replaced Batch Normalization layers with

GraphNorm, a normalization method tailored for graph data (Cai et al., 2020).

• Weighted cross-entropy loss: introduced class weights in the loss function to

address class imbalance in the mutation labels.

To compare the performances of the various model configurations, we summarize them in

the table below. Individual performances plots for each model configuration can be found

in the Appendix A ( 4 ).

Using Highly Variable Genes

Model Variant Accuracy F1-score

GCN Baseline 0.76 0.86

GCN + L2 Reg. 0.76 0.86

GCN + ComBat 0.67 0.79

GCN + Harmony 0.76 0.86

GCN + GraphNorm 0.77 0.87

GCN + Weighted Loss 0.76 0.86

GAT Baseline 0.79 0.87

GAT + L2 Reg. 0.79 0.87

GAT + ComBat 0.76 0.86

GAT + Harmony 0.78 0.87

GAT + GraphNorm 0.81 0.89

GAT + Weighted Loss 0.74 0.81

Using TP53 Target Genes

Model Variant Accuracy F1-score

GCN Baseline 0.76 0.86

GCN + L2 Reg. 0.76 0.86

GCN + ComBat 0.57 0.65

GCN + Harmony 0.67 0.78

GCN + GraphNorm 0.76 0.86

GCN + Weighted Loss 0.74 0.85

GAT Baseline 0.76 0.86

GAT + L2 Reg. 0.76 0.86

GAT + ComBat 0.86 0.91

GAT + Harmony 0.80 0.88

GAT + GraphNorm 0.77 0.86

GAT + Weighted Loss 0.61 0.69

Table 1: Side-by-side comparison of model performances using HVG-based and TP53
target gene-based feature selection.

Based on the results presented in the table and on a visual inspection of the different

performance plot (see Appendix 4), we observed that the Graph Attention Networks

consistently outperformed the Graph Convolutional Networks. In particular, for the model

27



with the HVGs, the GAT model implementing GraphNorm was the model that showed

the most promising results and, for this reason, it was selected as the basis configuration

for additional hyperparameter tuning. For the model leveraging the TP53 target genes,

both the GraphNorm and the combat-batch-corrected implementation showed promising

results, therefore we explored a combination of the two methods. However, this model

yielded an F1 score of 0.88, lower than the one obtained with the simple combat-batch-

corrected model, we decided therefore to proceed with the latter version. Summing up,

for the hyperparameter tuning step we will use the GAT + GraphNorm model for the

HVGs genes and the GAT + Combat for the TP53 target genes.

3.8 Hyperparameter Tuning

We now proceed to the hyperparameter tuning phase to optimize the hyperparameters

of the best-performing model. The tuning process is conducted leveraging the Optuna

optimization framework and its Python implementation (Akiba et al., 2019). Our aim is

to maximize the F1 score in the test set. The following hyperparameters were included in

the optimization: number of hidden channels in the model, dropout rate, learning rate,

weight decay for the L2-Regularization, number of attention heads in the GAT, whether

to apply loss weighting and whether to include a third GAT layer.

During the search, two separate hyperparameter tuning procedures were performed: one

using training graphs built from Highly Variable Genes (HVGs) and one using graphs

constructed from target genes. The optimization was run for 20 trials and each trial was

run for 50 epochs. The final selected configuration was the one that maximized the F1

score. The results of the tuning phase are presented in the table below.

Model Configuration Accuracy F1-score

GAT + GraphNorm (HVG) 0.918 0.948

GAT + ComBat (TP53 targets) 0.997 0.998

Table 2: Performance comparison between models using HVGs and TP53 target genes.
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4 Conclusion

In this work, we explored the use of Graph Neural Networks (GNNs) for predicting TP53

mutations from scRNA-seq data. We compard two strategies for graph construction: one

based on the Highly Variable Genes (HVGs), and another one limited to the TP53 target

genes. Although we used much fewer genes, 139 compared to 2,071 , the model based on

the TP53 target genes achieved better performances, confirming that these genes carry

strong predictive signal for the mutation of TP53 and may offer better interpretability of

the results.

Figure 13: Training and validation curves (accuracy, loss, and F1) for the fine-tuned GAT
model using TP53 target genes.

Compared to the initial XGBoost baseline trained directly on expression data, our final

GNN model reaches comparable and slightly better results, with a final F1 score of 0.998

compared to the XGBoost’s F1 of 0.995. While the performance improve is limited, the

graph approach introduces structural advantages, such as gene-gene interactions, that

may results in a better generalization on more heterogeneous datasets and offer deeper

biological insight.
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Appendix A - Complete Model Results

We leave here the full training and validation curves for all tested GCN and GAT archi-

tecture. Each plot shows the evolution of accuracy, loss and F1 score on both training

and validation sets over 50 epochs.

Highly Variable Genes (HVG)

Graph Convolutional Networks (GCN)

Figure 14: Training and validation curves for the GCN baseline on HVG data.

Figure 15: Training and validation curves for the GCN + L2 Reg. on HVG data.

Figure 16: Training and validation curves for the GCN + ComBat on HVG data.
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Figure 17: Training and validation curves for the GCN + Harmony on HVG data.

Figure 18: Training and validation curves for the GCN + GraphNorm on HVG data.

Figure 19: Training and validation curves for the GCN + Weighted Loss on HVG data.

Graph Attention Networks (GAT)

Figure 20: Training and validation curves for the GAT Baseline on HVG data.
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Figure 21: Training and validation curves for the GAT + L2 Reg. on HVG data.

Figure 22: Training and validation curves for the GAT + ComBat on HVG data.

Figure 23: Training and validation curves for the GAT + Harmony on HVG data.

Figure 24: Training and validation curves for the GAT + GraphNorm on HVG data.
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Figure 25: Training and validation curves for the GAT + Weighted Loss on HVG data.

Hyperparameter Tuned Model

Figure 26: Training and validation curves for the fine tuned GAT + GraphNorm on HVG
data.

TP53 Target Genes

Graph Convolutional Networks (GCN)

Figure 27: Training and validation curves for the GCN baseline on TP53 Target data.
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Figure 28: Training and validation curves for the GCN + L2 Reg. on TP53 Target data.

Figure 29: Training and validation curves for the GCN + ComBat on TP53 Target data.

Figure 30: Training and validation curves for the GCN + Harmony on TP53 Target data.

Figure 31: Training and validation curves for the GCN + GraphNorm on TP53 Target
data.
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Figure 32: Training and validation curves for the GCN + Weighted Loss on TP53 Target
data.

Graph Attention Networks (GAT)

Figure 33: Training and validation curves for the GAT baseline on TP53 Target data.

Figure 34: Training and validation curves for the GAT + L2 Reg. on TP53 Target data.
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Figure 35: Training and validation curves for the GAT + ComBat on TP53 Target data.

Figure 36: Training and validation curves for the GAT + Harmony on TP53 Target data.

Figure 37: Training and validation curves for the GAT + GraphNorm on TP53 Target
data.

Figure 38: Training and validation curves for the GAT + Weighted Loss on TP53 Target
data.
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Figure 39: Training and validation curves for the GAT + Weighted Loss + ComBat on
TP53 Target data.

Hyperparameter Tuned Model

Figure 40: Training and validation curves for the fine tuned GAT + ComBat on TP53
Target data.
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Appendix B - UMAP Visualizations After Batch Cor-

rections

To visualize the effects of the different batch correction algorithms, we computed UMAP

projections before and after applying them. Each plot shows the distribution of cells

colored by cell line on the left and by TP53 mutation status on the right.

Figure 41: UMAP after ComBat correction applied on HVG features.

Figure 42: UMAP after Harmony correction applied on HVG features.

40



Figure 43: UMAP after ComBat correction applied on TP53 target genes.

Figure 44: UMAP after Harmony correction applied on TP53 target genes.
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Appendix C - Computing Resources

All computational tasks, including graphs construction, model training, and hyperpa-

rameter optimization, were executed on a high-performance computing (HPC) cluster

managed via SLURM. The system was made of multiple compute nodes equipped with

dual Intel Xeon processors, large memory capacities (up to 1TB RAM), and NVIDIA

A100GPUs (up to 4 per node, 80GB each).

GPU acceleration was essential for an efficient training of Graph Neural Networks and

large-scale hyperparameter tuning. The high-memory nodes, toghether with the multiple

GPUs, allowed parallel processing of thousands of graph-based single-cell representations.
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