Bocconi

2| Bocconi

“}V | Universita Commerciale

Luigi Bocconi

Bachelor of Science in Economics
Management and Computer Science

Integrating Single-Cell
RNAseq and Graph Neural
Networks to Predict TP53

Mutation Status

Advisor:
Prof. Francesca Buffa

Bachelor of Science thesis by:
TOMMASO RAVASIO
Student ID no. 3192281

Academic Year 2024-2025

Desidero ringraziare la Professoressa Buffa e il Professor Tangherloni per il tempo,
l'attenzione e la disponibilita che hanno dedicato a questo progetto. Il loro supporto e
stato fondamentale per la qualita del lavoro, e sono grato per tutto cio che ho avuto

modo di imparare sotto la loro guida.

Ringrazio I’Universita Bocconi per avermi regalato i tre anni piu belli e impegnativi della
mia vita. Ringrazio tutte le persone che sono state al mio fianco in questo percorso. Mi
auguro di avere davanti a me altrettante sfide e di avere la fortuna di poterle affrontare
con persone che mi vogliono bene, proprio come in questi anni. Ringrazio Mattia, per
essere stato spesso la mia guida quando mi sentivo perso e disorientato. Ringrazio
Corinne, che mi ha sempre guardato con gli occhi con cuit non sono mai riuscito a
guardarmi. Un ringraziamento speciale va ai miei genitori, che hanno creduto in me
quando nemmeno io ero in grado. Infine ringrazio l'Italia per questi bellissimi 22 anni,

che sia un arrivederci e non un addio.

I would like to thank Professor Buffa and Professor Tangherloni for the time, attention,
and dedication they devoted to this project. Their support was crucial to the quality of

the work, and I am grateful for all that I was able to learn under their guidance.

I thank Bocconi University for giving me the best and most challenging three years of my
life. I thank all the people who have been by my side in this journey. I hope to have as
many challenges ahead of me and to be lucky enough to be able to face them with people
who love me, just like in these years. I thank Mattia, for often being my guide when I
felt lost and disoriented. I thank Corinne, who has always looked at me with the eyes

with which I have never been able to look at myself. Special thanks go to my parents, who
believed in me when even I was unable to. Finally, I thank Italy for these beautiful 22

years, may it be goodbye and not farewell.

Abstract

The TP53 gene is often referred to as the "guardian of the genome” due to its key role
in maintaining genomic stability and preventing the propagation of damaged DNA. It is
among the most commonly mutated genes in human cancers. Detecting its mutational
status is crucial for cancer diagnostics. In this thesis, we explore whether the TP53
mutation status can be predicted from single-cell transcriptomic data using graph-based

deep learning methods.

For our research, we used single-cell RNA sequencing data from 32 breast cancer cell
lines, for a total of 35,276 single-cell observations, merged with the mutation status data
of each cell line indicating whether the cell has undergone a mutation in TP53 or is a
wild type. Using these data, we construct gene co-expression networks based on Spear-
man correlation, transforming each single-cell observation into a gene-gene graph with
nodes representing genes and edges representing statistically significant co-expression be-
tween two genes. We then apply Graph Neural Network (GNNs), more specifically Graph
Convolutional Network (GCNs) and Graph Attention Network (GATs), to perform graph
classification and predict the TP53 mutation status of each single-cell. To better un-
derstand the impact of feature selection, throughout the full experiment we follow two
parallel preprocessing strategies: one statistically driven, selecting Highly Variable Genes
(HVGs), and the other biologically inspired, retaining only the genes known to be the
TP53 target genes.

Before applying graph-based models, we first trained XGBoost classifiers on bulk and
single-cell expression data to verify the presence of significative signal for predicting the
mutation of TP53. These models achieved, respectively, F1 scores of 0.88 and 0.99,
confirming the feasibility of the task. Once verified the presence of the signal, we verified
whether a graph approach could lead to interesting results. We tested various GNN
architectures and configurations exploring the effects of different design choices such as
batch correction, and regularization techniques. On the graphs built with the HVGs, the
GAT model with GraphNorm obtained the best performance, achieving an F1 score of
0.89. For the TP53 target genes graphs, the best model was the GAT combined with
ComBat batch correction. A final hyperparameter tuning using Optuna identified the

optimal values for different parameters such as number of hidden channels in the model,

dropout rate, learning rate, weight decay for the L2-Regularization, number of attention
heads in the GAT, whether to apply loss weighting, and whether to include additional
layers. After this step, the best model was a GAT applied to ComBat-corrected TP53
target genes, achieving an F1 score of 0.998. This results is marginally better than the
XGBoost baseline (F1 = 0.995). While the performance gain is modest, the graph based
approach is able to capture gene—gene interactions, which can improve generalization to

more heterogeneous datasets and allow for more biologically interpretable insight.

Contents

[Abstract]

(1 _Introductionl

27 Background|

2.1 Biological Background| 0.
[2.1.1 Quick Introduction to Biology|
[2.1.2 "Transcriptomics|
[2.1.3 Single-Cell RNA Sequencing|
2.1.4 The TP53 Gene And Its Rolel
[2.1.5 Gene Co-Expression Networks|

[2.2 Machine Learning Background|
[2.2.1 Graph Theory|.
[2.2.2 Graph representation for single-cell transcriptomic datal
[2.2.3 Graph structure modeling in biology|
224 Introduction to GNNg oo
225 GCNsand GAIS o oo
[2.2.6 Typical GNNs architecturel.

[3 Experiment|

BIDatal

[3.2 Preliminary Checks| oo

[3.3 Preprocessing and EDA| o000
[3.3.1 Gene Symbols mapping|. oL
[3.3.2 Single-Cell Mutation Mapping
[3.3.3 Sparsity]
[3.3.4 Quality Control Plots|.
B35 Normalizationl
[3.3.6 Highly Variable Genes|
[3.3.7 Principal Component Analysis|.
[3.3.8 Uniform Manifold Approximation and Projection|

10
10
10

12
13
14
15

[3.4 Analysis of TP53 Target Genes| 23
B.5 Network Constructionl L 25
[3.5.1 'Train and Test split|. 25

B.52 Correlation matrixlo o 25

[3.5.3 Graph Construction| 25

B.6 Model Architectured 26
[3.7 Model Comparison| 26
[3.8 Hyperparameter Tuningl 28
4__Conclusion| 29

1 Introduction

The TP53 gene, encoding the tumor suppressor protein p53, is mutated in more than
50% of human cancers. Loss of p53 function undermines the cell’s ability to repair DNA
or halt the cell cycle, making TP53 a critical biomarker in oncology. For this reason, the
p53 protein is often called the "guardian of the genome”, and the loss of its function due

to mutation often lead to cancer.

Traditional approaches to assess the TP53 status rely on bulk sequencing data which
collapse the expression of millions of cells into a single aggregate measurement. However,
tumors are notoriously heterogeneous, and even within a single cell line, individual cell
can differ dramatically in their transcriptomes. Single-cell RNA sequencing, also know as
scRNA-seq, has emerged in the last decade, offering a higher resolution for the expression
data. This allows not only to resolve the mentioned heterogeneity but also to profile
tens of thousands of individual transcriptomes in a single experiment. At the same time,
scRNA-seq data come with their own challenges: extreme sparsity (usually above 90%),
high dimensionality and pronounced batch effects. For this reason, a more careful and

rigorous preprocessing and downstream analysis is needed to treat them.

In parallel, graph based deep learning approaches, leveraging the so called Graph Neural
Networks (GNNs), have obtained success in many domains by allowing to explicitly model
relationships among entities. In the biology domain, GNNs are able to exploit not only

each expression level per gene but also their interactions and co-expression.

Recent studies have already explored the use of Graph Neural Networks in genomics.
For instance, Algabri et al., [2022 proposed scGENA, a framework to build co-expression
networks from single cell data to uncover biological mechanism. Li et al., 2025| offers an
in depth review of the current landscape of GNNs applied to single-cell data, highlighting
the potential of graph-based approaches to improve interpretability and performances
in classification tasks. However, few works have focused specifically on predicting the
mutation status of TP53 using single-cell data structured as graphs. Recent efforts have
explored the possibility of predicting TP53 mutation status from gene expression data
using machine learning techniques. More precisely, the work by Triantafyllidis et al.,

2023/ show that the bulk transcriptomic data contain sufficient signal to uncover patterns

associated with TP53 mutations. While their results are promising, they are based on bulk
RNA-seq. In this research, we build upon these results and ask whether such predictive
signal is present at the single-cell resolution and whether a graph-based approach can
be effective to detect it. To do that, we will apply Graph Neural Networks to gene co-
expression graphs constructed from single-cell RNA-seq data. This allows us to model
both the expression of individual genes and their relationships with each other. Our
expectation is that this approach will provide more accurate and biologically interpretable

predictions of the TP53 mutational status.

2 Background

Since this research lies at the intersection of biology and machine learning, we now in-
troduce the necessary background to understand our methodology. The background is
structured into two parts: the first introduces the biological foundations necessary to
understand the context and significance of TP53 mutations. The second outlines the ma-
chine learning methods used, with a focus on graph-based approaches. The aim of this
section is to provide the reader with the fundamental biological and computational tools
to follow the experiment pipeline; not to provide a comprehensive, nor exhaustive, review

of the topics involved.

2.1 Biological Background

2.1.1 Quick Introduction to Biology

The central dogma of molecular biology explain how the flow of information works in a self
replicating organism. Genetic information is encoded in the DNA. The genetic information
is copied into RNA molecules in a process called transcription. Then, a process called
translation, convert them into proteins. Proteins are the biological entity which perform
all the function of the cell; including translation, transcription and DNA replication. The
real mechanism of life is much more complex but this model is good enough to give an
idea of how living organism operate. DNA is a polymer, which means that it is a molecule
composed of four different molecules called nucleotides (or bases). These four bases (A:
adenine, G:guanine, C:cytosine, T:thymine) can be chained together in an arbitrary order
along a sugar backbone, allowing the encoding of information. Usually, the chromosomes
of an organism consist of two chains that are twisted around each other in the well know
double-helix structure. The two strands are held together by chemical bonds between the
couple of complementary bases. Specifically, the four bases falls under two categories:
purines (A and G) and pyrimidines (C and T). The difference is due to their chemical
composition and is beyond the scope of this introduction, for us it is enough to know that
their chemical structure allows the pairing of purine A with pyrimidine T and of purine
G with pyrimidine C, and these bonds hold together the double-helix. RNA is a molecule
that is very similar to DNA with thymine (T) nucleotide changed to uracil (U). But the

biggest difference is in its structure, which is single stranded and can fold onto itself. This

property is the key to many biological and structural functions of the RNA.

RNA Protein

— —

transcription translation

OROOR

© Copyright 2022 5t. Jude Children's Research Hospital,a not-for-profit, section 501(c)(3)

Figure 1: Illustration of the central dogma of molecular biology. Adapted from Learn
Genomics (2024).

2.1.2 Transcriptomics

Transcriptomics is the study of RNA transcripts produced by the genome under specific
conditions — collectively referred to as the transcriptome. It is key to highlight the differ-
ence between the transcriptome and the more well known genome. While the genome is
usually more stable across different cells of the same organism, the transcriptome usually
is more dynamic and reflects cellular responses. In transcriptomics, we look at the gene
expression at the transcript level to get insight into the regulatory mechanism that con-
trol cellular function. Transcriptomics is now a cornerstone of biomedical research, with
application ranging from cancer biology to drug discovery and personalized medicine. In
this research, transcriptomic data are used as a foundational layer to build co-expression
networks and predict the associated TP53 mutation status. In particular, the integration
of single-cell RNA sequencing data offers higher resolution into transcriptional variability

at the cellular level, enabling more precise modelling approaches.

2.1.3 Single-Cell RNA Sequencing

Modern sequencing technologies have revolutionized the way we analyse biological sys-
tem. Traditional DNA sequencing techniques, such as Sanger sequencing, were limited

in scalability. The introduction of the so called NGS (next generation sequencing) plat-

forms enabled massively parallel sequencing, allowing researchers to read millions of reads.
Among the applications of NGS, RNA sequencing is the standard for transcriptome-wide
analysis. RNA sequencing was initially applied to bulk RNA extracted from cell popula-
tions. This provided an average expression profile, but was missing to represent cell-to-
cell heterogeneity. The development of single cell RNA sequencing (scRNAseq) enabled
transcriptomic profiling at the resolution of individual cells. This technique capture tran-
scriptional variability that would otherwise be undetectable in bulk measurements. In
this analysis, we leverage scRNAseq data to investigate the relationship between gene

expression patterns and TP53 mutational status at single cell level.

Single-Cell Analysis & ‘* i

* * * @ Reveals heterogensity
& Sangle-Cell input 3 and subpopulation
3 ‘ Each cell type has a distinct expression variability of
.| expression profile thousands of cells
~
.
—
]
Bulk Analysis
Bulk RM& ingud Average gene expression Cellular helerogeneily
Irom all cells masked

Figure 2: Single cell RNA-seq reveals cellular heterogeneity that is masked by bulk RNA-
seq methods. 10x Genomics (2024)

2.1.4 The TP53 Gene And Its Role

The TP53 gene encodes the protein p53, a tumor suppressor protein that plays a central
role in maintaining genomic stability. The p53 is often referred to as the “guardian of
the genome” due to its activation in response to cellular stresses such as DNA damage,
hypoxia or oncogene activation. Once activated, p53 induce cell cycle arrest preventing
the propagation of damaged cells. Mutations in TP53 are among the most common
alterations observed in human cancers, found in over 50% of human primary tumors
(Chen et al., . These mutations often results in loss of pb3 function, allowing cells
with genomic instability to avoid cell death and continue to proliferate. Given its role
in tumor suppression, tp53 has been extensively studied as a biomarker and therapeutic

target. In this research are investigated how transcriptomic profiles represented in gene

co-expression network derived from single cell RNA sequencing can be used to predict

TP53 mutational status of individual cells.

2.1.5 Gene Co-Expression Networks

Gene co-expression network are mathematical graph representations of relationships be-
tween genes based on their expression profiles across a set of samples. In these networks,
nodes represent genes, and weighted undirected edges represent the level of correlation
between the expression level of the two genes. The underlying idea is that genes with
similar expression patterns are likely to be related, co-regulated, or part of the same biolog-
ical pathways. Constructing co-expression networks usually involves computing pairwise
Spearman or Pearson correlation coefficients for each pair of gene. A threshold is then
applied based on both correlation and p-values to retain only significant correlation while
controlling for false positives. In the context of single-cell data, constructing such net-
works is usually more challenging due to increased sparsity and noise, but it is still a great
structure to reveal biological signal (Algabri et al., [2022)). In this thesis, co-expression
graphs serve as the basis for constructing input graphs used by the graph neural networks

models to predict TP53 mutation status.

2.2 Machine Learning Background

2.2.1 Graph Theory

Graph theory is a branch of discrete mathematics that studies the properties of graphs.
A graph can be defined as an abstract representation of pairwise relationship between
different objects. Graph theory has a wide range of applications and it often provides a
useful framework for modelling interconnected systems in many fields such as computer
science, physics and biology. Mathematically, a graph G = (V, E) is defined as a structure
composed of a set of nodes (or vertices) V' and a set of edges £ C V x V which defines

pairwise relationships between nodes.

In the context of biological science, graphs are often used to model gene regulatory inter-
actions or co-expression relationships. Given a gene expression matrix X € R"*¢ where n
is the number of samples and d is the number of genes, one can construct a graph either

at the level of samples (cell-cell graphs and the ML problem is formulated as a node

10

classification problem) or at the level of features (gene-gene graphs and the ML problem
is now formulated as a graph classification problem). In this work, we focus on gene-gene
co-expression graphs, performing therefore a graph classification with our model. More
precisely, in our graphs each node v; € V represent a gene, each edge e; € E represent,
if present, the significant correlation between the two genes obtained by their expression

profiles across the cells.

Each node v; € V can be associated with a feature vector z; € R/, where f denotes the
number of features per node. These features are allocated in a feature matrix X € RIVI*/,
where each row corresponds to a node’s features. Edges in the graph can be represented
using an adjacency matrix A € R¥? where A;; represents the weight of the edge between
gene i and j. For unweighted graphs, A;; € {0,1}, while for weighted graphs, A;; is a

continuous value, usually the Pearson or Spearman correlation coefficient.

Graph based representations are particularly useful in machine learning models, especially
in those problems in which standard vectorial approaches fail to fully capture relationships
between features. The graphs above defined serve as a foundation for applying Graph
Neural Networks, which learn from both node features and graph topology to perform

tasks such as classification and link prediction.

2.2.2 Graph representation for single-cell transcriptomic data

To apply GNNs to transcriptomic data, we first have to define how graphs are constructed
from raw gene expression matrices. From this data, we build gene-gene co-expression
graphs. To quantify the correlation between genes, the Spearman correlation coefficient
is usually used. This is done because Spearman is more robust to non-normality and
outliers than Pearson correlation. Briefly, it is computed by ranking the expression values
of each gene across cells and then applying Pearson to these ranks. A threshold is then
applied to both the correlation coefficients and the corresponding p-values to retain only
statistically significant edges. For the p-value threshold, it is common to apply the Bon-
ferroni correction to control the family-wise error rate by dividing the desired significance

level o by the number of tests performed. In our case becomes

where p is the adjusted significance threshold obtained for the p-values, « is the signifi-

cance level and (72‘) corresponds to the number of pairwise tests performed with n genes.

One challenge in graph construction is the presence of batch effect. Batch effect can be
defined as a source of non-biological variation introduced when different samples in the
dataset are processed in different experimental groups, this lead to systematic differences
in the data not related to biological variables. If not corrected, this can distort correlation
patterns and introduce biases in the graphs. Many algorithms can be applied to correct
for this behavior. Two of the most widely used in transcriptomics are ComBat (Johnson
et al., 2006) and Harmony (Korsunsky et al., [2019)) with their implementation in Scanpy,

both known for their robustness and computational efficiency.

The final output is a weighted adjacency matrix A € R%*¢ where each entry A;; reflects
the strength of association between gene i and gene j. This matrix defines the edge
structure for each single-cell graph used as input to the GNN. Together with the node
feature matrix X; € R™/ where X; corresponds to the expression values of the i-th cell,
this defines the full input graphs G; = (X;, A). Each graph G; can be seen as an individual
observation in the graph classification task. Note that this construction strategy is just
one of the many, different approaches may apply different strategies. For a more complete

review of GNN approaches for single-cell omics see Li et al. (2025).

2.2.3 Graph structure modeling in biology

Modeling single-cell transcriptimic data as graphs present challenges that are less common
in other domains. Let’s consider a graph G; = (X, A) associated with a single cell i, where
X; € R/ is the feature (or gene expression) matrix. and A € R?*? is the adjacency

matrix.

A first challenge is handling the sparsity of scRNA-seq data. Sparsity refers to the number
of zero entries in the gene expression matrix X, which arises because most genes are not
expressed in most single cells. Sparsity levels exceeding 90% are common, while such
values would be considered high in other contexts, they are expected here. In practice,
high sparsity can lead to unreliable edge weights in the adjacency matrix and disconnected

components in the graphs, resulting in a worse model performance.

Moreover, the high dimensionality of gene expression profiles can be a problem. Feature

12

selection is often performed to retain only a subset of genes. However, defining the optimal
subset of features is a non-trivial optimization problem. Feature selection strategies can be
either algorithmic or based on prior biological knowledge. An example of an algorithmic
approach is to identify the Highly Variable Genes (HVGs), defined as the genes with the
greatest variance across cells. Alternatively, one may leverage known biological pathways,

for example by selecting only the TP53 target genes identified in Fischer (2017).

2.2.4 Introduction to GNNs

Graph Neural Networks (GNNs) are a family of deep learning models designed to operate
directly on graph-structured data. Unlike traditional Neural Networks which assume input
data to lie in the Euclidean space (for example 2D grids like images or 1D sequences like
texts), GNNs apply neural networks operations to the graphs domain, incorporating both

node-level features and the underlying topology of the graph into the learning process.

Figure 3: Left: image in Euclidean space. Right: graph in non-Euclidean space. Zhou

et al., [2020

To give the reader a high level glimpse of how GNNs operates, we can describe them as
iterative message passing architectures: at each layer, every node updates its representa-
tion by aggregating information from its neighbors. The generic update rule in a GNN is

the following:
B = fOREY R e NG))

where hgl) denotes the representation of node ¢ at layer [, and N(i) indicates the set
of neighbors of node i. The function f) aggregates the features of the neighbors and

combines them with the current node representation.

13

2.2.5 GCNs and GATs

Different type of GNNs architecture implements different f). Graph Convolutional Net-
works (GCNs) generalize Convolutional Neural Networks (CNNs) to work in the graph
domain. GCNs apply convolutional operations to nodes and their neighbors, aggregating
features from neighboring nodes to update a node’s representation. The forward propa-

gation rule in a GCN is:
D — U(D—1/2AD—1/2H(Z)W(Z))

Here, A = A + I denotes the adjacency matrix of the graph after adding self loops
through the addition of the Identity matrix I. This ensures that each nodes includes its
own features during message passing. D is the degree matrix, in which each diagonal entry
D;; indicates the degree of the node i (that is the sum of edge weights connected to node
i). H® is the matrix containing the features embedding of all nodes at layer 1, where each

row corresponds to a node. W is the weight matrix that transforms the input features,

and o is the non linear activation function applied at the end of the aggregation step.

Another popular variant is the Graph Attention Network (GATs), which leverages the at-
tention mechanism to improve how GNNs aggregate information from neighbors. Instead
of treating all neighbors equally, GATs assign different attention weights to each neighbor
based on its importance. This allows GATs to focus on the most relevant parts of the

graphs. In a GAT layer, the propagation rule is

(I4+1) D170 7,0
hg —0(S ayWOR)

JEN (i)

0

where ;" is the attention coefficient between node ¢ and node j, computed as:

all) = softmax; (LeakyReLU (aT [W(l)hgl) I W(l)hg-l)D)

ij
Here, a is the learnable weight vector, || denotes vector concatenation and W is a shared
linear transformation.

By stacking multiple GNN layers, each node can incorporate information from increasingly

distant neighbors; improving as a consequence context-awareness of the model. This

14

information can be used for tasks such as node classification or, as in our case, graph

classification. (Zhou et al., 2020)

2.2.6 Typical GNNs architecture

A common GNNs architecture pipeline begins with a series of GNN layers responsible for
message passing and local aggregation. To improve generalization and reduce overfitting,
dropout and normalization layers are inserted between message passing layers. Dropout
layers simply deactivates a fraction of node features during training to prevent the model
from over-relying on specific input patterns. Normalization layers can have different
nature. Two popular choices are BatchNorm and GraphNorm. BatchNorm normalizes
node embeddings across a mini-batch of graphs, while GraphNorm normalizes at the
individual graph level, making it more suitable for graph-level tasks. Batch normalization
operates by standardazing features across all nodes in a batch. For a feature dimension

k, it computes

k k
(k) xE) - MSB)

B = k)2
J%) + €

where ,ug;) and agm are the mean and variance computed across the entire batch for

feature k. Graph Normalization, instead, computes statistics at the individual graphs

level. Given a graph G = (V, E) and node feature (), it computes:

4k — xfj’“) - /L(Gk)

: 0—8“ 2 + €
After each normalization step, we can find a non-linear activation function, usually ReLLU,
followed by dropout. Convolution, normalization, activation and dropout together forms
the typical GNN layer which is repeated multiple times in the full architecture. At the end
of the last message passing layer, a pooling layer is applied. A common method is to use
global mean pooling, which computes the average of node embeddings across the entire
graph. This graph representation is then passed to one or more fully connected layers to

perform the final classification task on the final embeddings. These embeddings integrate

both the expression profile of each gene and its topological role in the co-expression graph.

15

Input Graph Data

!

1. GNN Layer

Y

2. Normaliza-
tion Layer

Y

3. ReLU + Dropout

Y

4. Dropout Layer

Y

5. Pooling Layer

Y

6. Fully Con-
nected Layer

l

Output Result

Figure 4: Schematic example of a minimal Graph Neural Network (GNN) architecture
showing the core layers of a basic graph-based model.

16

3 Experiment

3.1 Data

Before starting to talk about the experiment, it is important to spend some time on
the data used. To build our final CSV file used in the analysis, we had to merge the
information coming from two different datasets: one for the expression data and one for

the mutation data.

The first is the scRNA-seq publicly available dataset Single Cell Breast Cancer Cell-
line Atlas (Gambardella, |2022)), published on Figshare and available at https://doi.org/
10.6084 /m9.figshare.15022698.v2. It consists of raw UMI counts of 35,276 single cells de-
rived from 32 human breast cancer cell lines, generated using the 10x Genomics Chromium
platform. Each matrix provides gene-level expression counts per individual cell, enabling
high-resolution transcriptional profiling. The data are unfiltered and unnormalized, pre-
serving the original unique molecular identifier (UMI) counts for each gene-cell pair. This
format is optimal to conduct preprocessing, quality control, and analytical workflows
using pipelines such as Scanpy. We will go deeper into this in the next pages. The mu-
tation data are obtained from the publicly available dataset The TP53 Database (R21,
Jan 2025): https://tpb3.cancer.gov. For a full description of the database structure and
transition, see de Andrade et al. (2022). This dataset provides comprehensive information
on the TP53 mutation status across a wide array of human cancer cell lines. Each entry
includes detailed annotations such as cell line identifiers and genetic alterations, including
TP53 mutation specifics. We then merged the information from the two datasets based
on the cell line IDs. More precisely, for almost the totality of the single cells (to be more
precise, 90.24%) in the expression data, we were able to find the respective cell lines in
the mutation data and obtain the information on whether that specific single cell was
mutated or not. At this stage, our dataset consisted of 31,833 single-cell observations and
47,096 genes. The bulk RNA-seq expression profiles are obtained from the Cancer Cell
Line Encyclopedia (CCLE), specifically the DepMap 22q2 release (DepMap, [2022)). The
list of TP53 target genes used for biologically driven feature selection was obtained from
Fisher’s curated list of p53 targets (Fischer, [2017)), which can be found at the following

link https://tpb3.cancer.gov/target_genes.

17

https://doi.org/10.6084/m9.figshare.15022698.v2
https://doi.org/10.6084/m9.figshare.15022698.v2
https://tp53.cancer.gov
https://tp53.cancer.gov/target_genes

3.2 Preliminary Checks

Before conducting an in-depth analysis in a graph-based approach, we performed some
preliminary experiments to verify whether gene expression data contains detectable signal

predictive of TP53 mutation status.

The first experiment consisted in training a basic XGBoost classifier on the bulk RNA-
seq gene expression data, using TP53 mutation status as the target variable. The model
achieves an accuracy of 0.85 and a F1-score of 0.88. With these results we can conclude
that the bulk data contains a strong predictive singal for TP53 mutation status. These

findings align with the one presented in Triantafyllidis et al. (2023).

We then checked if this signal is also present at a single-resolution. We trained another
XGBoost classifier, this time on the single-cell expression data, achieving an accuracy of
0.99 and an Fl-score of 0.99. These results confirms the preservation of the mutational

signal in the single-cell data.

These findings support the hypothesis that expression profiles carry relevant information
about TP53 mutation status, both at bulk and single-cell resolution. This motivates the
use of more advanced models which can incorporate both individual gene expression and

the relational structure among these genes.

In the next pages, we will evaluate the performance of a model using mainly the F1-score,
more suitable for slighly imbalanced datasets like ours. This metric score is computed as

follows:

Fl—9 Precision - Recall

" Precision + Recall

where precision and recall are computed as follows:

Precisi TP
recision = ————
ecisio TP + P

TP
l=——
Reca TP + PN

with TP being the number of True Positives, FP the number of False Positives and FN

the number of False Negatives.

18

3.3 Preprocessing and EDA

The first step in the analysis was to perform some exploratory data analysis to get to know
the data better and to prepare them to be fed to the model. The majority of the following
operations are performed leveraging the Python library scanpy presented in Wolf et al.

(2018).

3.3.1 Gene Symbols mapping

The 10x Genomics expression matrix retrieved from the data used Ensembl ID to identify
the genes; to ensure interpretability and consistency with external annotations, a gene
symbol mapping step was required. To achieve this, we query the MyGene database using
the mygene python library (Xin et al., 2016). Although most of the Ensembl IDs were
successfully converted, 928 genes had no corresponding symbol and 22 appeared more
than once due to duplicates or annotation inconsistencies. This step enabled a clearer

biological interpretation of downstream analysis.

3.3.2 Single-Cell Mutation Mapping

To associate each single cell with its corresponding TP53 mutation status, we performed
a matching operation between the expression dataset and the mutation one. To do that,
we first ensured the consistency between the two datasets by cleaning and standardizing
cell line identifiers. The mutation status was then added to the expression data. Cells
with missing matching information were excluded from the dataset. This led to removing
4,562 cells, leaving 30,714 single cells which corresponds to the 87% of our original dataset.
We report here the cell lines found in the expression data with a missing match in the

mutation data: "HS578T" "MCF12A’ '"MX1’ '"MDAMB453’.

3.3.3 Sparsity

The gene expression matrix presented a high level of sparsity. The number of non-zero
entries was only 100,804,217 out of 1,446,506,544. The corresponding sparsity is 93.03%.
As said before, although sparse, this distribution is expected for scRNAseq data and does
not indicate technical errors. We took into account this level of sparsity when designing

our downstream analyses.

19

3.3.4 Quality Control Plots

To assess the initial quality of the single-cell dataset, we created some visualizations
plotting some key metrics across all cells using violin plots (Figure [5)) and scatter plots
(Figure @ In particular, we focused on two quality control metrics: the number of genes
detected per cell and the total number of transcript counts, that is the total UMI count
per cell. The violin plots reveal the distribution and helps in the visual detection of
outliers. Cell with extremely low or extremely high total counts may indicate respectively
damaged cells or doublets. To sum up we plotted a scatter plot of the two dimensions
versus each other, that is “n_genes_by_count” and “total_counts” to support the detection
of cells with abnormal transcription profiles. These plot were used as a diagnostic tool
to confirm overall quality of the data before normalization and feature selection. As a
further step of quality assessment we applied the Scrublet algorithm (Wolock et al., 2019)
directly on the raw expression data. In our dataset, no doublets were detected suggesting
a clear single cell capture. As a consequence no filtering based on the doublet prediction

was applied.

n_genes by counts total_counts

12000
200000

10000
150000

8000

value

100000 ~
6000 -

4000 + 50000 4

2000 ~

Figure 5: Left: Violin plots of the total number of genes detected per cell Right: total
number of transcript counts

3.3.5 Normalization

Before downstream analysis, the raw count matrix was normalized to account for varia-

tions in sequencing depth between samples. First a Counts Per Million (CPM) normal-

20

12000 4

10000 4

8000 A

6000 -

n_genes_by_counts

4000 A

2000 A

T T T T T
0 50000 100000 150000 200000
total_counts

Figure 6: Scatter Plot of total number of genes detected per cell vs total number of
transcript counts

ization was applied. The CPM normalization scales the raw read counts for a gene by the
total number of reads in a sample, multiplied by a million. Subsequently, a logarithmic
transformation was applied to stabilize variance and approximate a normal distribution.
This normalization step is key to reduce the impact of highly expressed genes and to allow

for more robust dimensionality reduction.

3.3.6 Highly Variable Genes

Feature selection was performed to retain only the most informative genes. We identified
the highly variable genes (HVGs) across the data features. This step reduces the noise
introduced by non-informative genes, which can obscure biological signal. Gene were
filtered based on their mean expression and dispersion, applying a threshold of a minimum
mean of 0.0125, a maximal mean of 3 and a minimal dispersion of 0.5. This procedure
allowed us to reduce our number of considered genes from 47,096 to 2,071. The selected
HVG were then visualized in a mean dispersion plot (Figure [7)), showing the HGVs with

respect to the others.

3.3.7 Principal Component Analysis

We then applied Principal Component Analysis (PCA) to the subset of HVGs we previ-
ously identified. This is done to reduce the dataset dimensionality while preserving its
most significant sources of variation. To investigate how many principal components were

needed, some visualizations were plotted. The first graph illustrates how much variance

21

L I + highly variable genes
« other genes

dispersions of genes (normalized)
dispersions of genes (not normalized)
~

0 1 2 3 4 5 0 1 2 3 4 5
mean expressions of genes mean expressions of genes

Figure 7: Mean Variance Plot for HVGs

is explained by each principal component (ranked in decreasing order of the variance ex-
plained). A good rule of thumb in these graphs is to identify an elbow point, that is when
the slope of the variance explained changes significantly. In Figure 8| there is a significant
change of slope around the 50th component. However we can see from our Cumulative
Explained Variance plot (Figure E[) that this would explain less than the 50% of the vari-
ance of our data which is too little. This pushed us to increase the number of principal

component to 700, reaching a total explained variance of 80%.

Cumulative Explained Variance by PCA

0.8
Explained Variance by PCA
0.7 +
0.6 1
0.5 1

0.4 4

0.3 4

Variance Ratio (log scale)
Cumulative Explained Variance

0.2 1

0.1+

T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Principal Component Number of Principal Components
Figure 8: PCA variance ratio plot Figure 9: PCA cumulative explained vari-
ance

3.3.8 Uniform Manifold Approximation and Projection

To visualize the global structure of the dataset, we computed a neighbourhood graph on
the PCA-transformed space and applied a Uniform Manifold Approximation and Projec-
tion (UMAP). The graph you can see below (Figure [10)) are colored using two different
criteria. The first one assign different colors to different cell lines. The second graphs

assign different colors to different mutation status. In blue are the mutated cell lines,

22

and in orange the non-mutated or wild type. From the left plot the clusters are sepa-
rated and correspond to individual cell lines, indicating a strong batch effect due to cell
line. In our further analysis, we will be aware of this as it may bias the model to learn
cell line differences rather than mutation status. In the right plot, we observe that mu-
tated and wild-type cells are well-separated within individual cluster. This suggest that
TP53 mutation has a detectable impact on gene expression, although it does not override

the dominant effect of cell line identity. We will take this into account in our modeling

strategy.
cell_lines mutation_status
-
k-2 o AUSE5 ¥
e BT20 L) e
BT474 La
BT483
& e BT549 . %
“ ‘ . cx-\Ls;S
o m e CALB m ¢ “ P o MUT
E< CAMAE 9 \. wr
E DU44TS i
- . EFM1o | W
P -~ ‘@ EVSAT o - @
e HCC38) - N
1 e Hcc7o g Ead X
HCC1143 <
e
UMAP1 UMAP1

Figure 10: Left: UMAP colored by cell lines Right: UMAP colored by cell status

3.3.9 Final check on Quality Control Plots

As a final step, we compared the quality control plots before and after the filtering and
transformation steps. By looking at the violin plots in Figure we observe significantly
more symmetric distributions. Similarly, the scatter plot in Figure appeared more
compact, indicating an improvement in the uniformity of the dataset. This confirms the
effectiveness of our preprocessing pipeline to contribute to a cleaner and more biologically
significant representation of our data. Consequently, for our subsequent analysis we are

going to use the reduced and transformed data produced by this pipeline.

3.4 Analysis of TP53 Target Genes

In addition to our preprocessing pipeline based on Higly Variable Genes, we investigated
whether a biologically driven feature selection could be a useful alternative. To be more
precise, we explored the use of TP53 target genes derived from the list published by
Fischer (2017). From the expression data, we derived a pairwise correlation matrix using
only this set of target genes and compared that to the one built using the HVGs set, both
at single-cell and bulk resolution. We analyzed the sparsity and plotted the histogram of

23

2000 4

n_genes_by_counts total_counts

=
7
=}
o
L

1000
2000

900

=
o
1=}
o
L

800

n_genes_by_counts

1500

700

value

value

1000 500

500

T T T T T T T T
300 400 500 600 700 800 200 1000
total_counts

(a) Violin plots of genes per cell and total (b) Scatter plot: genes per cell vs. total counts
counts after preprocessing. after preprocessing.

Figure 11: Quality-control metrics after preprocessing of single-cell data.

the correlation values in the two matrices to compare the distributions (Figure [12)).

Our initial hypothesis was that the TP53 target genes would exhibit a different correla-
tion profile, with a distribution shifted to the right due to stronger positive co-expression
among genes regulated by common transcription factor. However, as shown by the
histograms, the two distribution of correlation values does not substantially differ. A
Komolgorov-Smirnov test confirms that the two distributions are significantly different,

yet the difference is much less than expected.

Despite this smaller-than-expected shift, we will further investigate both feature selection
strategies as two parallel pipelines throughout the entire model construction and compar-
ison phases. This will allow us to assess the impacts of each feature selection method on

the model performance.

Hist of Correlation Values Hist of Correlation Values

107 T T
3 Original =3 Original bulk
[TPS3 Target [TP53 Target bulk

10°

Absolute frequence
Absolute frequence

-1.00 -0.75 ~0.50 -0.25 0.00 025 X 3 X —1.00 -0.75 —-0.50 -0.25 0.00 0.25
Correlation Value Correlation Value

(a) Single-cell data (b) Bulk data

Figure 12: Distribution of gene—gene correlation values for HVG (blue) and TP53 targets
(orange), computed on single-cell and bulk data.

24

3.5 Network Construction

In this section we present the pipeline to transform the preprocessed single-cell expression

data into input graphs for the GNN.

The starting point is therefore the tabular structured expression matrix, consisting of
30,714 cells per 2,071 genes for the HVG data and 30,714 cells per only 139 genes for the
TP53 target data. Each row represents the expression profile of a single cell across all

selected genes.

3.5.1 Train and Test split

As a first step, the expression matrix was randomly split into training and test subsets,

using the common rule of 80% of the cells assigned to the train set and 20% to the test.

3.5.2 Correlation matrix

After the split, we computed a gene-gene correlation matrix using the training set only.
By doing this, we prevent any information from the test set from leaking into the input
data. This is important to avoid data leakage problem. The matrix is built such that
it captures pairwise gene relationships by calculating the Spearman correlation between
each pair of genes across all training cells. To retain only meaningful connection and
filter out noise, we applied a correlation threshold of 0.2 and a p-value threshold of 0.05

Bonferroni corrected. Values below this threshold were set to 0.

3.5.3 Graph Construction

Each individual cell was represented as a graph G; = (X;, A) where X, € R4*1 ig the node
feature matrix containing the expression value of the d genes for cell i, and A € R%¥*9 is
the adjacency matrix. It is important to note that the adjacency matrix is pre-computed
and shared across all observations, therefore all graphs share the same topology but differ

in the node features based on their expression level.

Graphs were stored in PyTorch Geometric objects and written to disk in batches of 500
graphs to ensure scalability (Fey & Lenssen, 2019)). The final train and test sets contain
24,571 and 6,143 graphs, respectively. Each graph has 2,071 nodes and 157,158 edges
when using HVGs and 138 nodes and 846 when using TP53 target genes.

25

3.6 Model Architectures

Two distinct Graph Neural Network architectures were implemented: A Graph Convolu-
tional Network (GCN) and a Graph Attention Network (GAT). Each model received the

same input graphs described in the previous sections.
The general architecture of both GCN and GAT consists of:
o Two graph convolutional or attention layers depending on the model type

» A normalization layer after each message-passing step (either BatchNorm or Graph-

Norm)
o ReLU activation and dropout to improve generalization

« A global mean pooling layer to compress node-level information into a single graph-

level embedding
o A final fully connected (linear) layer for binary classification

Each of these component has a specific role. The message passing layers take care of
updating the node embeddings based on the neighbors information. Normalization and
dropout are useful in preventing overfitting. Finally, the pooling layer aggregates the
graph representation into a vector, which will then be passed to the fully connected
layer to perform classification. Both models were implemented in Pytorch Geometric in a
modular design to allow for comparison of different configurations. Additional information
about the different architectural and training modifications explored will be discussed in

the next section.

3.7 Model Comparison

To evaluate the performance of the different models, for each GNN architecture, we started
with a baseline two-layer implementation, followed by various modifications to explore how

different design choices impact classification performances. These variations included:

« L2 Regularization (AdamW): applied weight decay regularization using the

AdamW optimizer to mitigate overfitting.

o Batch correction with ComBat: used data preprocessed with the scanpy imple-

26

mentation of ComBat for batch effect correction (Johnson et al., |2006).

o Batch correction with Harmony: used data preprocessed with the scanpy im-

plementation of Harmony for batch effect correction (Korsunsky et al., [2019).

e GraphNorm instead of BatchNorm: replaced Batch Normalization layers with
GraphNorm, a normalization method tailored for graph data (Cai et al., 2020).

o Weighted cross-entropy loss: introduced class weights in the loss function to

address class imbalance in the mutation labels.

To compare the performances of the various model configurations, we summarize them in

the table below. Individual performances plots for each model configuration can be found

in the Appendix A ([4]).

Using Highly Variable Genes Using TP53 Target Genes

Model Variant Accuracy Fl1-score = Model Variant Accuracy F1-score
GCN Baseline 0.76 0.86 GCN Baseline 0.76 0.86
GCN + L2 Reg. 0.76 0.86 GCN + L2 Reg. 0.76 0.86
GCN + ComBat 0.67 0.79 GCN + ComBat 0.57 0.65
GCN + Harmony 0.76 0.86 GCN + Harmony 0.67 0.78
GCN + GraphNorm 0.77 0.87 GCN + GraphNorm 0.76 0.86
GCN + Weighted Loss 0.76 0.86 GCN + Weighted Loss 0.74 0.85
GAT Baseline 0.79 0.87 GAT Baseline 0.76 0.86
GAT + L2 Reg. 0.79 0.87 GAT + L2 Reg. 0.76 0.86
GAT + ComBat 0.76 0.86 GAT + ComBat 0.86 0.91
GAT + Harmony 0.78 0.87 GAT + Harmony 0.80 0.88
GAT + GraphNorm 0.81 0.89 GAT + GraphNorm 0.77 0.86
GAT + Weighted Loss 0.74 0.81 GAT + Weighted Loss 0.61 0.69

Table 1: Side-by-side comparison of model performances using HVG-based and TP53
target gene-based feature selection.

Based on the results presented in the table and on a visual inspection of the different
performance plot (see Appendix {4}), we observed that the Graph Attention Networks

consistently outperformed the Graph Convolutional Networks. In particular, for the model

27

with the HVGs, the GAT model implementing GraphNorm was the model that showed
the most promising results and, for this reason, it was selected as the basis configuration
for additional hyperparameter tuning. For the model leveraging the TP53 target genes,
both the GraphNorm and the combat-batch-corrected implementation showed promising
results, therefore we explored a combination of the two methods. However, this model
yielded an F1 score of 0.88, lower than the one obtained with the simple combat-batch-
corrected model, we decided therefore to proceed with the latter version. Summing up,
for the hyperparameter tuning step we will use the GAT + GraphNorm model for the
HVGs genes and the GAT + Combat for the TP53 target genes.

3.8 Hyperparameter Tuning

We now proceed to the hyperparameter tuning phase to optimize the hyperparameters
of the best-performing model. The tuning process is conducted leveraging the Optuna
optimization framework and its Python implementation (Akiba et al., [2019)). Our aim is
to maximize the F1 score in the test set. The following hyperparameters were included in
the optimization: number of hidden channels in the model, dropout rate, learning rate,
weight decay for the L2-Regularization, number of attention heads in the GAT, whether
to apply loss weighting and whether to include a third GAT layer.

During the search, two separate hyperparameter tuning procedures were performed: one
using training graphs built from Highly Variable Genes (HVGs) and one using graphs
constructed from target genes. The optimization was run for 20 trials and each trial was
run for 50 epochs. The final selected configuration was the one that maximized the F1

score. The results of the tuning phase are presented in the table below.

Model Configuration Accuracy F1l-score
GAT + GraphNorm (HVG) 0.918 0.948
GAT + ComBat (TP53 targets) 0.997 0.998

Table 2: Performance comparison between models using HVGs and TP53 target genes.

28

4 Conclusion

In this work, we explored the use of Graph Neural Networks (GNNs) for predicting TP53
mutations from scRNA-seq data. We compard two strategies for graph construction: one
based on the Highly Variable Genes (HVGs), and another one limited to the TP53 target
genes. Although we used much fewer genes, 139 compared to 2,071 , the model based on
the TP53 target genes achieved better performances, confirming that these genes carry
strong predictive signal for the mutation of TP53 and may offer better interpretability of

the results.

Fined tuned - Accuracy Fined tuned - Loss Fined tuned - F1 Score

1.00 = — 057 — Train Loss 1.000 ——
p—— —— 1 —— e ———
7~ Validation Loss —\
[0.975
0.95 04
0.950
0.3
Z 090 @ 0.925
g] g
H g 3
£ . & 0.900
0.85 -
0875
0.1
o.80 4 0.850
—— Train Accuracy \\M - — TainF1
Validation Accuracy 0.0 0.825 Validation F1

0 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 13: Training and validation curves (accuracy, loss, and F1) for the fine-tuned GAT
model using TP53 target genes.

Compared to the initial XGBoost baseline trained directly on expression data, our final
GNN model reaches comparable and slightly better results, with a final F1 score of 0.998
compared to the XGBoost’s F1 of 0.995. While the performance improve is limited, the
graph approach introduces structural advantages, such as gene-gene interactions, that
may results in a better generalization on more heterogeneous datasets and offer deeper

biological insight.

29

References

10x Genomics. (2024). Single cell rna-seq: An introductory overview and tools for getting
started [Accessed: 2025-06-17].

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

Algabri, Y. A., Li, L., & Liu, Z.-P. (2022). Scgena: A single-cell gene coexpression network
analysis framework for clustering cell types and revealing biological mechanisms.
Bioengineering, 9(8), 353. https://doi.org/10.3390/bioengineeringd080353

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., & Wang, L. (2020). Graphnorm: A principled
approach to accelerating graph neural network training. https://doi.org/10.48550/
ARXIV.2009.03294

Chen, X., Zhang, T., Su, W., Dou, Z., Zhao, D., Jin, X., Lei, H., Wang, J., Xie, X., Cheng,
B., Li, Q., Zhang, H., & Di, C. (2022). Mutant p53 in cancer: From molecular
mechanism to therapeutic modulation. Cell Death and amp; Disease, 13(11). https:
//doi.org/10.1038 /s41419-022-05408- 1

de Andrade, K., Lee, E., Tookmanian, E., & et al. (2022). The tp53 database: Transition
from the international agency for research on cancer to the us national cancer
institute. Cell Death and Differentiation, 29, 1071-1073. https://doi.org/10.1038/
s41413-022-00976-3

DepMap, B. (2022). Depmap 22q2 public. https://doi.org/10.6084 /M9.FIGSHARE.
19700056.V2

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geo-
metric. https://doi.org/10.48550/ ARXIV.1903.02428

Fischer, M. (2017). Census and evaluation of p53 target genes. Oncogene, 36(28), 3943~
3956. https://doi.org/10.1038 /onc.2016.502

Gambardella, G. (2022, January). Single Cell Breast Cancer cell-line Atlas. https://doi.
org/10.6084 /m9.figshare.15022698.v2

Johnson, W. E.; Li, C., & Rabinovic, A. (2006). Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics, 8(1), 118-127. https:
//doi.org/10.1093 /biostatistics /kxj037

30

https://doi.org/10.3390/bioengineering9080353
https://doi.org/10.48550/ARXIV.2009.03294
https://doi.org/10.48550/ARXIV.2009.03294
https://doi.org/10.1038/s41419-022-05408-1
https://doi.org/10.1038/s41419-022-05408-1
https://doi.org/10.1038/s41418-022-00976-3
https://doi.org/10.1038/s41418-022-00976-3
https://doi.org/10.6084/M9.FIGSHARE.19700056.V2
https://doi.org/10.6084/M9.FIGSHARE.19700056.V2
https://doi.org/10.48550/ARXIV.1903.02428
https://doi.org/10.1038/onc.2016.502
https://doi.org/10.6084/m9.figshare.15022698.v2
https://doi.org/10.6084/m9.figshare.15022698.v2
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037

Korsunsky, 1., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y.,
Brenner, M., Loh, P.-r.; & Raychaudhuri, S. (2019). Fast, sensitive and accurate
integration of single-cell data with harmony. Nature Methods, 16(12), 1289-1296.
https://doi.org/10.1038 /s41592-019-0619-0

Learn Genomics. (2024). The central dogma [Accessed: 2025-06-17]. https: / /learngenomics.
dev/docs/biological-foundations/the-central-dogma/

Li, S., Hua, H., & Chen, S. (2025). Graph neural networks for single-cell omics data: A
review of approaches and applications. Briefings in Bioinformatics, 26(2). https:
//doi.org/10.1093 /bib/bbaf109

Triantafyllidis, C. P., Barberis, A., Hartley, F., Cuervo, A. M., Gjerga, E., Charlton, P.,
van Bijsterveldt, L., Rodriguez, J. S., & Buffa, F. M. (2023). A machine learning
and directed network optimization approach to uncover tp53 regulatory patterns.
iScience, 26(12), 108291. https://doi.org/10.1016/j.isci.2023.108291

Wolf, F. A., Angerer, P.; & Theis, F. J. (2018). Scanpy: Large-scale single-cell gene ex-
pression data analysis. Genome Biology, 19(1). https://doi.org/10.1186/s13059-
017-1382-0

Wolock, S. L., Lopez, R., & Klein, A. M. (2019). Scrublet: Computational identification
of cell doublets in single-cell transcriptomic data. Cell Systems, 8(4), 281-291.€9.
https://doi.org/10.1016/j.cels.2018.11.005

Xin, J., Mark, A., Afrasiabi, C., Tsueng, G., Juchler, M., Gopal, N., Stupp, G. S., Putman,
T. E., Ainscough, B. J., Griffith, O. L., Torkamani, A., Whetzel, P. L., Mungall,
C. J., Mooney, S. D., Su, A. 1., & Wu, C. (2016). High-performance web services
for querying gene and variant annotation. Genome Biology, 17(1). https://doi.
org/10.1186/s13059-016-0953-9

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020).
Graph neural networks: A review of methods and applications. Al Open, 1, 57-81.
https://doi.org/10.1016/j.aiopen.2021.01.001

31

https://doi.org/10.1038/s41592-019-0619-0
https://learngenomics.dev/docs/biological-foundations/the-central-dogma/
https://learngenomics.dev/docs/biological-foundations/the-central-dogma/
https://doi.org/10.1093/bib/bbaf109
https://doi.org/10.1093/bib/bbaf109
https://doi.org/10.1016/j.isci.2023.108291
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1186/s13059-016-0953-9
https://doi.org/10.1186/s13059-016-0953-9
https://doi.org/10.1016/j.aiopen.2021.01.001

Appendix A - Complete Model Results

We leave here the full training and validation curves for all tested GCN and GAT archi-
tecture. Each plot shows the evolution of accuracy, loss and F1 score on both training

and validation sets over 50 epochs.

Highly Variable Genes (HVG)

Graph Convolutional Networks (GCN)

Baseline - Accuracy Baseline - Loss Baseline - F1 Score
0763 1 rain Accuracy —— Train Loss —— Train F1
Validation Accuracy 075 Validation Loss Validation F1
0.8635
0.762 4
070
0.761 4 0.8630
4 0.65
Z 0.760 o 0.8625
e @2 g
H E a
2 0759 0.60 o
0.8620
0.758 1
0.55 ™
0.8615
0.757 4
0.50
0.8610
0.756 4
[10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 14: Training and validation curves for the GCN baseline on HVG data.

AdamW - Accuracy AdamW - Loss AdamW - F1 Score
—— Train Accuracy 08731 rain Loss 0.8640 — TainF1
07624 Validation Accuracy validation Loss validation F1
- 0.650
0.8635
0.761 0625
0,600 0.8630
0.760
g 3
g 4§ 0575 s
H é 3 08625
§ 07594 \ o
0550
0.8620
0758 0525
0.8615
0.757 0.500
0.756 0.475 0.8610
0 10 20 30 40 50 0 10 20 30 0 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 15: Training and validation curves for the GCN + L2 Reg. on HVG data.

Combat - Accuracy Combat - Loss Combat - F1 Score
076 —— Train Loss _
V\ ~ 061 Validation Loss 086 VN A
N\ / 1\
NN\ NAY
\l 0.60 0.85 f
0.74 11 I
| | | |
| 0.59 0.84 [
> It I
o
T o072 1 058 £ o83 i
E [l 18 & Il
g \ z [l
‘ 0.57 0.82 [
0.70 i [
0.56 081
| |
\ 0.55 080 |
0.68 1 —— Train Accuracy M — Train F1 ‘
054
Validation Accuracy 079 Validation F1
4 10 20 30 0 50 4 10 20 30 0 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 16: Training and validation curves for the GCN + ComBat on HVG data.

32

harmony - Accuracy harmony - Loss harmony - F1 Score

0.7605 0.90 7
—— Train Accuracy —— Train Loss 086350 —— Train F1
~—— Validation Accuracy |l Validation Loss —— Validation F1
0.7600 g 0.86325
0.7595 0.86300
0.7590 0.86275
z @
s]
5 3 0.86250
g 0.7585 a
< o
0.86225
0.7580
0.86200
0.7575
0.86175
0.7570
0.86150
4 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 0 50
Epoch Epoch Epoch
GraphNorm - Accuracy GraphNorm - Loss GraphNorm - F1 Score
0.70
—— Train Accuracy —— Train Loss —— Train F1
~—— Validation Accuracy —— Validation Loss —— Validation F1
0.872 +
0.780
0.65
0.870
0.775
0.60
> © 1
g B § o868
5 0.770
§ 3 a
0.55
0.866
0.765
0.50 0.864 -
0.760
0.862
0.45
o 10 20 30 0 50 0 10 20 30 0 50 o 10 20 30 0 50
Epoch Epoch Epoch

Figure 18: Training and validation curves for the GCN + GraphNorm on HVG data.

weights - Accuracy weights - Loss weights - F1 Score
—— Train Accuracy 114 — Train Loss 0.868 4 —— Train F1
0.775 —— Validation Accuracy —— Validation Loss —— Vvalidation F1
0 0.866 -
0.770
09
> o 0.864
g g 3
g 0765 3 4
< 08 I
0.862
0.760 07
0.860
06
0.755 0.858
o 10 20 30 40 50 0 10 20 30 40 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 19: Training and validation curves for the GCN + Weighted Loss on HVG data.

Graph Attention Networks (GAT)

Baseline - Accuracy Baseline - Loss Baseline - F1 Score
0.795 J 0.54
- —— Train Accuracy —— Train Loss 0.874 4 — Train F1
—— Validation Accuracy —— Validation Loss —— Validation F1
0.790
0.52 0.872
0.785
0.50 0.870
. 0.780
g ¢
] a]
3 3 & 0.868
§ 07754 0.48 -
< jnd
0.770 0.866
0.46
0.765
0.864
0.760 044
0.862
0 10 20 30 40 50 0 10 20 30 0 50 10 20 30 40 50
Epoch Epoch Epoch

Figure 20: Training and validation curves for the GAT Baseline on HVG data.

33

AdamW - Accuracy

AdamW - F1 Score

Figure 24:

—— Train Accuracy 0.54 0.874 1 —— Train F1
07904 Validation Accuracy —— Validation F1
0.872 4
0.52
0.785
0.870
0.780 0.50
E g 0.868 4
5 07754 g
g 048 o 0.866 1
0.770
0.864
0.765 - 0.46
0.862
0.760 -
0.44 0.860
o 10 20 30 40 50 o 10 20 30 40 50
Epoch Epoch
Figure 21: Training and validation curves for the GAT + L2 Reg. on HVG data.
combat - Accuracy combat - F1 Score
0.560
0.8625
0.758 4 0.555
0.8620
0.550
0757 4 0.8615
. .
8 0545 S
3 @
g [nd 0.8610
0.756
0.540
0.8605
0.755 4 0.535
0.8600
—— Train Accuracy 0530 —— Train F1
—— Validation Accuracy) 0.8595 1 —— Validation F1
0.754 4 T T T T T T T T T T T
o} 10 20 30 40 50] 10 20 30 40 50
Epoch Epoch
Figure 22: Training and validation curves for the GAT + ComBat on HVG data.
harmony - Accuracy harmony - F1 Score
07851 frain Accuracy 053 — Train F1
—— Validation Accuracy 0.870 —— Validation F1
0.52
0.780
0.51 0.868
0.775 4 0.50
g g 0.866
2 0.49 w
g 0.770 4 -
* * 0.864 4
0.48
0.765
0.47 0.862
0.760 0.46
0.860
0.45
] 10 20 30 40 50] 10 20 30 40 50
Epoch Epoch
Figure 23: Training and validation curves for the GAT + Harmony on HVG data.
GraphNorm - Accuracy GraphNorm - F1 Score
0.84 1" — Train Accuracy 0.54 0.895 | — TainF1
—— Validation Accuracy —— Validation F1
0.52 4
0.890
0.82 0501
0.885
0.48 1
> g
% 0.80 % 0.46 4 “:‘ 0.880
< ind
0.44 0.875
078 042 0.870
0.40 4
0.865
0.76 0.38
0 10 20 0 W 50 0 10 20 30 P 50
Epoch Epoch

Training and validation curves for the GAT + GraphNorm on HVG data.

weight - Accuracy weight - Loss weight - F1 Score

0.78 | — Train Accuracy 066 — Train Loss 086 | — Train F1
—— validation Accuracy —— Validation Loss —— validation F1
0.76 0.64 0.84
0.82
074 0.62
> 0.60 © 080
£ o072 2 S
3 K] @
: 0.58 o078
0.70
056 0.76
0.68
074
0.54
o8 072
0.52
4 10 20 30 40 50 4 10 20 30 0 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 25: Training and validation curves for the GAT + Weighted Loss on HVG data.

Hyperparameter Tuned Model

optuna - Accuracy optuna - Loss optuna - F1 Score
0.96
—— Train Accuracy —— Train Loss —— Train F1
092514 yalidation Accuracy 0.50 —— Validation Loss —— Vvalidation F1
0.900 045 094
0.875 1 0.40
0.92
> ©
3 ©
2 0.850 » 5
é w 0.35 &
< ¢
0.825 4 0.90
0.30
0.800
0.25 08
0.775 1
0.20
0.750 0.86
0 5 15 20 25 30 35 40 0 5 o 15 20 25 30 35 40 0 5 0 15 20 25 30 3 40
Epoch Epoch Epoch

Figure 26: Training and validation curves for the fine tuned GAT + GraphNorm on HVG
data.

TP53 Target Genes

Graph Convolutional Networks (GCN)

Baseline - Accuracy Baseline - Loss Baseline - F1 Score
0540
0.8632
0.7595
0535 0.8630
0.7590
0.8628
g 0530 g
] a s
5] 3
§ 0.7585 E o 08626
0525
0.8624
0.7580
0520 0.8622
—— Train Accuracy —— Train Loss — TainF1
0.7575 —— Validation Accuracy —— Validation Loss 0.8620 —— Validation F1
0 10 20 30 20 50 0 10 20 30 40 50 o 10 20 30 0 50
Epoch Epoch Epoch

Figure 27: Training and validation curves for the GCN baseline on TP53 Target data.

35

AdamW - Accuracy AdamW - Loss AdamW - F1 Score

—— Train Accuracy —— Train Loss —— Train F1
—— validation Accuracy —— validation Loss 0.8632 —— validation F1
0.7595
0.8630
0.7590
0.8628
7 @
¢ g
S ors8s 7 08626
< ind
0.8624
0.7580
0.8622
0.7575 0.8620
0 10 20 30 40 50 0 10 20 30 40 50 () 10 20 30 40 50
Epoch Epoch Epoch

Figure 28: Training and validation curves for the GCN + L2 Reg. on TP53 Target data.

ComBat - Accuracy ComBat - Loss ComBat - F1 Score
0.700 1 — Train Loss — TainF1
073 —— validation Loss 0.85 —— validation F1
0.675
0.80
o070 0.650 1
o , 06251 2 075
5 o065 a 3
3 g @
< 0.600 o
0.70
0.60 0575
0550 0.65
ossd— Iraluz /:ccur:(y
—— validation Accuracy 0.525 4
4 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 29: Training and validation curves for the GCN + ComBat on TP53 Target data.

Harmony - Accuracy Harmony - Loss Harmony - F1 Score
0.76 — Trai
Tintess 0se
0.64 jalidation Loss
074
0.84
0.62
0.72
0.82
5 0.60 ©
g a g
g 070 E] o
< 0.58 L 080
0.68
0.56 078
0.66
—— Train Accuracy 0.54 076] — TainF1
—— Validation Accuracy —— Validation F1
[10 20 30 40 50 [10 20 30 40 50 [10 20 30 40 50
Epoch Epoch Epoch

Figure 30: Training and validation curves for the GCN + Harmony on TP53 Target data.

GraphNorm - Accuracy GraphNorm - Loss GraphNorm - F1 Score
0.760
— Train Loss — Train F1
—— Validation Loss 0.8630 { —— Validation F1
0.759 4 0.58
0.8625
07381 0.56 0.8620
3 0.757 g 0615
g % 0.54 g
H] &
g o 0.8610
0.756
0.52 0.8605
0.755
0.8600
0.50
0.754 —— Train Accuracy 0.8595
—— Validation Accuracy
0 10 20 30 40 50 0 10 20 30 Ly 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 31: Training and validation curves for the GCN + GraphNorm on TP53 Target
data.

36

weight - Accuracy

weight - Loss

weight - F1 Score

—— Train Accuracy —— Train Loss —— Train F1
—— validation Accuracy 0.72 4 validation Loss —— validation F1
0.74 084
0.72
070 0.82
> 0.70 v 0.80
g a g
3 g 068 @
< 068 “ 078
0.66 0.66 0.76
0.64 074
0.64
4 10 20 30 40 50 4 10 20 30 0 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 32: Training and validation curves for the GCN + Weighted Loss on TP53 Target
data.

Graph Attention Networks (GAT)

baseline - Accuracy

baseline - Loss

baseline - F1 Score

—— Train Accuracy —— Train Loss 0.864 —— Train F1
— Validation Accuracy —— Validation Loss — Validation F1
0.762 1
052 0.862
0.760
0.860
051
g e
g g]
0.758 1
g k| 4 0858
0.50
0.756 0.856
0.754 1 0.49 0.854 1
o} 10 20 30 40 50] 10 20 30 40 50 o} 10 20 30 40 50
Epoch Epoch Epoch

Figure 33: Training and validation curves for the GAT baseline on TP53 Target data.

AdamW - Accuracy

AdamW - Loss

AdamW - F1 Score

= = 0.864 =
0.764 4 — Train Accuracy —— Train Loss —— Train F1
—— validation Accuracy 053 —— Validation Loss —— validation F1
0.863
0.763
0.862
0.762
> © 1
% o614 ¢ 0.861
] &
< s
0.760 4 0.860
0.759 4 0.859 4
0.758 0.858
0 10 20 30 40 50 4 10 20 30 0 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 34: Training and validation curves for the GAT + L2 Reg. on TP53 Target data.

37

combat - Accuracy combat - Loss combat - F1 Score

—— Train Accuracy —— Train Loss —— Train F1
0.86 1" —— validation Accuracy 0.5504 —— Validation Loss 0.91 4 —— validation F1
0.84 0.5257 0.90
0,500
0.82
> o 089
8 9 1 S
é § 0.475 5
< o0.80 T e
0.450
0.78 0,425 0.87
076 0,400 086
0375
0 10 20 30 40 50 [10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 35: Training and validation curves for the GAT 4+ ComBat on TP53 Target data.

harmony - Accuracy harmony - Loss harmony - F1 Score
0.82 0.89
—— Train Accuracy —— Train Loss —— Train F1
—— validation Accuracy o054 —— Validation Loss —— validation F1
0.80 0.88
0.52
0.50 0.87
0.78
z ©
c @ 048 S
5 @
g ~ 086
< I
0.76 0.46
0.44 0385
074
0.42
0.84
0.40
4 10 20 30 40 50 4 10 20 30 40 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 36: Training and validation curves for the GAT + Harmony on TP53 Target data.

GraphNorm - Accuracy GraphNorm - Loss GraphNorm - F1 Score
0.772 1 — Train Accuracy 0.55 —— Train Loss 0.867 1 — Train F1
—— validation Accuracy —— Validation Loss —— validation F1
0.54
0.770 4 0.866 1
053
0.768 4
0.865 -
0.52
2 0.766 ©
S fos $ 0.864
g 0.764 4 s
0.50
0.863 1
0.762 4
0.49
0.760 1 0.862 1
0.48
0.758 4 0.861 4
0.47
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 37: Training and validation curves for the GAT + GraphNorm on TP53 Target
data.

weight - Accuracy weight - Loss weight - F1 Score
0.65 —— Train Accuracy — Train Loss — TainF1
—— Validation Accuracy —— Validation Loss 0.74 —— Validation F1
0.64
0.64
072
0.63
0.63
3 062 " £ o070
H g]
§ . a
0.61 0.62
0.68
0.60
0.61
0.66
0.59
0.58 0.60
4 10 20 30 0 50 4 10 20 30 0 50 o 10 20 30 40 50
Epoch Epoch Epoch

Figure 38: Training and validation curves for the GAT + Weighted Loss on TP53 Target
data.

38

GraphNorm and Combat - Accuracy GraphNorm and Combat - Loss GraphNorm and Combat - F1 Score
0.81
—— Train Accuracy 056 —— Train Loss —— Train F1 4
Validation Accuracy K\ Validation Loss 0.880 Validation F1 /
0.80 /\} 054 /_/
N 052 0.875 A7
0.79 J /
7 /Y
050 4
- ’\\/ N 0.870 IAa
s 078 @ s
3 8 048 @
< & 0.865 1
0.77 |
0.46 4 [
| \
J 0.860 VA
0.76 0.44 \
_ |
VA \
0.42 0.855 4 /
0.75 WA i N
4 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 39: Training and validation curves for the GAT 4+ Weighted Loss + ComBat on

TP53 Target data.

Hyperparameter Tuned Model

Fined tuned - Accuracy

Fined tuned - Loss

Fined tuned - F1 Score

1.00 e 054 —— Train Loss 1.000 ——————
~\ Validation Loss —\/
[0975
0.95 0.4+
0.950
3 090 031 © 0925
g 2 g
H 3 a
< 02 & 0.900
0.85 7
0875
01
0.80 A 0.850
—— Train Accuracy __\M&\ — Train F1
Validation Accuracy 004 0.825 Validation F1
0 10 20 30 40 50 [10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 40: Training and validation curves for the fine tuned GAT + ComBat on TP53

Target data.

39

Appendix B - UMAP Visualizations After Batch Cor-

rections

To visualize the effects of the different batch correction algorithms, we computed UMAP

projections before and after applying them. Each plot shows the distribution of cells

colored by cell line on the left and by TP53 mutation status on the right.

cell_lines

UMAP2

UMAP1

AUS65
BT20
BT474
BT483
BT549
CALS1
CALB51R
cAMAL S
DU4475
EFM19
EVSAT
HCe3s
HCCT0
HCC1143

mutation_status

e

UMAP1

Figure 41: UMAP after ComBat correction applied on HVG features.

cell_lines

o
'
v

UMAP1

AUS65
BT20
BT474
BT483
BT549
CAL51
CALB516!
CAMAL =
DU447S”
EFM19
EVSAT
HCC3s
HCC70
HCC1143

mutation_status

Figure 42: UMAP after Harmony correction applied on HVG features.

40

e MUT
® WT

e MUT
® WT

UMAP2

UMAP2

cell_lines

UMAP1

o9 00

*e o0

Figure 43: UMAP after ComBat

cell_lines

UMAP1

Figure 44: UMAP after Harmony correction applied on TP53 target genes.

L N

AUS65
BT20
BT474
BT483
BT549
CALS1
CALBS1R
cAmMAL S
DU4475
EFM19
EVSAT
HCe3s
HCCT0
HCC1143

correction applied on TP53 target genes.

AUS65
BT20
BT474
BT483
BT549
CAL51
CALB516!
CAMAL 5
DU447S”
EFM19
EVSAT
HCC38
HCC70
HCC1143

41

mutation_status

UMAP1

mutation_status

e MUT
® WT

e MUT
® WT

Appendix C - Computing Resources

All computational tasks, including graphs construction, model training, and hyperpa-
rameter optimization, were executed on a high-performance computing (HPC) cluster
managed via SLURM. The system was made of multiple compute nodes equipped with
dual Intel Xeon processors, large memory capacities (up to 1TB RAM), and NVIDIA
A100GPUs (up to 4 per node, 80GB each).

GPU acceleration was essential for an efficient training of Graph Neural Networks and
large-scale hyperparameter tuning. The high-memory nodes, toghether with the multiple

GPUs, allowed parallel processing of thousands of graph-based single-cell representations.

42

	Abstract
	Introduction
	Background
	Biological Background
	Quick Introduction to Biology
	Transcriptomics
	Single-Cell RNA Sequencing
	The TP53 Gene And Its Role
	Gene Co-Expression Networks

	Machine Learning Background
	Graph Theory
	Graph representation for single-cell transcriptomic data
	Graph structure modeling in biology
	Introduction to GNNs
	GCNs and GATs
	Typical GNNs architecture

	Experiment
	Data
	Preliminary Checks
	Preprocessing and EDA
	Gene Symbols mapping
	Single-Cell Mutation Mapping
	Sparsity
	Quality Control Plots
	Normalization
	Highly Variable Genes
	Principal Component Analysis
	Uniform Manifold Approximation and Projection
	Final check on Quality Control Plots

	Analysis of TP53 Target Genes
	Network Construction
	Train and Test split
	Correlation matrix
	Graph Construction

	Model Architectures
	Model Comparison
	Hyperparameter Tuning

	Conclusion

