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Abstract

The study of policy effects is core in empirical economic research. The effect of
a policy is likely to vary across different units of a population. Recently, many ap-
proaches to estimate heterogeneous treatment effects have been proposed in econo-
metrics, also touching upon the machine learning field. This has triggered the emer-
gence of causal machine learning, and empirical economists have diverging opinion
on whether it should be used. The main contribution of this study is to provide an
exhaustive methodological review on the estimation of heterogeneous causal effects.
Moreover, it investigates the impact of causal machine learning on econometrics, at-
tempting to answer the question of whether and how it can be beneficial. It is found
that the main methods to estimate heterogeneous effects are: including interactions
in a linear regression; the marginal treatment effect estimator; matching on propen-
sity scores; local regressions with differencing; double machine learning; and causal
forests. Moreover, I argue that machine learning can be beneficial to econometrics, es-
pecially as it flexibly models data and can be adapted to accurately estimate causal
effects, and therefore it should be integrated in this discipline.
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Introduction

The study of policy effects is core in empirical economic research. A major part of this

discipline is concerned with investigating how a certain policy, called treatment, affects

a population (of individuals, firms, countries, etc.), by measuring the causal relation-

ship between such treatment and a certain variable of interest. The econometric litera-

ture provides a wide range of methods to estimate the treatment effect on a population

on average (some collections are Angrist and Pischke, 2009; Imbens and Rubin, 2015;

Miguel, Hernan, and James, 2023). The effect of a policy, however, is likely to vary

across different units of a population, probably at the individual level. This variation

is due to individuals differing in many characteristics, that determine how they react

to a policy, and that they may self-select into treatment. Estimating the heterogeneous

effects of the policy, at least for some subgroups of the population, is crucial for social

policy. In fact, if policymakers have information on which subgroups benefit the most

from a treatment, they can choose more effectively to which part of the population and

to which extent the treatment should be applied, allocating resources more efficiently

(Heckman and Vytlacil, 2005; Xie, Brand, and Jann, 2012; Zhou and Xie, 2020).

The econometric literature on heterogeneous causal effects estimation, how-

ever, has not a long history, and methods to perform this task have been pro-

posed only quite recently. This may be due to the inferior availability of data

and precise individual-level information that there was in the last century, com-

pared to today (Wager and Athey, 2018). In fact, the pioneer of these methods is

Angrist, Imbens, and Rubin [1996]’s Local Average Treatment Effect (LATE) estimator.

It is an Instrumental Variables (IV)-based method, which estimates the policy effect
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INTRODUCTION

only for a subgroup of the population, those who comply with a change in the instru-

ment. The Nobel Prize in Economic Sciences 1 to G. Imbens and J. Angrist in 2021 (to-

gether with D. Card) particularly honours this significant breakthrough in economet-

rics (Lechner, 2023). Indeed, the LATE estimator paved the way for the development

of other methods to estimate heterogeneous treatment effects, and since then novel

advanced approaches have been proposed. Among these, there are both structural

models developing on the IV approach (e.g. Heckman and Vytlacil, 2005), and others

using trending statistical techniques like non-parametric methods (e.g. Nie and Wager,

2021; Xie et al., 2012).

These advancements in econometrics have also touched upon the computer sci-

ence and machine learning fields. Machine learning is a subfield of artificial in-

telligence, that develops algorithms to be applied to data, mainly for tasks of pre-

diction and classification. These disciplines have come to the forefront in the

last decades, bringing profound technological improvements, also tied to the ac-

cess to larger datasets and greater computational capabilities of recent times. In-

deed, economists have been using methods that typically belong to machine learn-

ing for economic research. Most recently, they are also adapting them to the

specific case of causal inference, developing the new area of research of causal

machine learning (Athey, 2019; Efron, 2020; Jordan and Mitchell [2015]; Lechner,

2023).2 In fact, the estimation of heterogeneous causal effects appears to be

one of the most suitable econometric tasks for the application of causal ma-

chine learning tools (Curth, Peck, McKinney, Weatherall, and van Der Schaar, 2024;

Marginal Revolution University, 2022).

However, the use of causal machine learning is not embraced by all empirical

economists. Some of them strongly support it for the prediction accuracy and com-

putational capacity of machine learning algorithms, while others are more cautious

and skeptical about its suitability for economic studies.

1More specifically, the “Sveriges Riskbank Prize in Economic Sciences in Memory of Alfred Nobel”.
2Throughout this thesis, I use “causal machine learning” and “machine learning for causal inference”

or “for empirical economic research” as synonyms.

8



For instance, in an interview by I. Andrews in May 2022, the Nobel Laureates that

contributed so much to the advancement in econometric methodology themselves, G.

Imbens and J. Angrist, expose sharply diverging opinions on the impact of machine

learning on economics (Marginal Revolution University, 2022). Another example are

J. Heckman and R. Pinto, who in a paper comparing some methods from econometrics

and computer science, conclude that “Economics has a rich body of theory and tools to

address policy problems. Applied economists today would do well to use the impressive body

of tools embodied in modern structural econometrics” (Heckman and Pinto, 2022). S. Athey

and G. Imbens, on the other hand, present an overview of machine learning methods

relevant to economics, and state that the list of tools they discuss “should be part of the

empirical economist’s toolkit and should be covered in the core econometrics graduate courses”

(Athey and Imbens, 2019).

As it is evident, a vivid debate is currently underway among the economic

academia, and although it is not possible to go back in time and completely deny the

use of machine learning, the way in which it can affect empirical economic research is

still an open question.

In light of this scenario, the aim of this study is to clarify the recently developed

array of methods available to economists for estimating heterogeneous causal effects,

combining econometrics and machine learning. Furthermore, this thesis seeks to un-

derstand what are the roots of the two opposing views on the use of causal machine

learning. By doing so, it intends to contribute to answering the question of whether

and how machine learning can actually benefit empirical economic research, especially

in the case of heterogeneous treatment effects estimation.

Among similar methodological surveys there are, for the econometric part,

Xie et al. [2012] and Zhou and Xie [2020], and for the machine learning side,

Gong, Hu, Basu, and Zhao [2021]; Knaus, Lechner, and Strittmatter [2020] and part

of Athey [2019]. Moreover, there are works comparing the two approaches, like

Dorie, Hill, Shalit, Scott, and Cervone [2019] and Heckman and Pinto [2022], but
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concerning the estimation of the average treatment effect and considering rather

specific algorithms. Hence, the main contribution of this study is to combine the two

fields and provide an exhaustive overview of all the fundamental methods economists

have to estimate heterogeneous causal effects, and also to assess whether the machine

learning ones can be advantageous for this task.

The rest of this thesis is organized as follows. First, the next section explains some

basic concepts and algorithms to ease the understanding of the following technical

analysis and discussion. Chapter 1 concerns the methodology review and explains

each method in detail. Chapter 2 investigates how causal machine learning methods

relate to econometric ones and what are their potential gains, and looks at some empir-

ical evidence from the literature to assess how they perform for heterogeneous effects

estimation.

Preliminary Concepts

The general setting considered throughout this thesis is that of an observational study

on a sample of n individuals, each one denoted by i. Some of these are exposed to a

treatment D, distinguishing the “treatment” group (D = 1) and the “control” group

with (D = 0), to which no treatment (or in a more general setting, for other values

of D, a different one) is applied. We study the effect of the treatment on an outcome

variable of interest Y given a set of J individual characteristics X. We further denote Y1

the potential outcome for the treated individuals (D = 1), and Y0 the potential outcome

for control individuals (D = 0). We indicate in lowercase the realizations of a variable,

and with a hat the estimates. For instance, y is a realization of Y, and ŷ is an estimate.

In general, treatment effects are estimated as the difference in outcomes between

treated and non treated units, after controlling for the characteristics X to ensure

comparability between the groups (Imbens and Wooldridge, 2009).
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Furthermore, some approaches to studying policy effects assume that the treatment

is exogenous. The exogeneity (or ignorability) assumption states that the treatment is

independent of potential outcomes given X, i.e.

(Y1, Y0) ⊥⊥ D|X 3 (1)

Violations of this assumption are given, for instance, by individuals self-selecting

into the treatment, that is one of the source of heterogeneity in policy effects, besides

individuals reacting differently to the treatment (Zhou and Xie, 2020).

PROPENSITY SCORES Many methods to estimate heterogeneous treatment effects

(HTE henceforth) presented in this study are based on propensity scores. Let us de-

fine propensity scores as the probability of an individual in the sample of receiving the

treatment, given their characteristics X, i.e.

P(X) ≡ Pr(D = 1|X) 4 (2)

Rosenbaum and Rubin [1983] crucially found that under exogeneity, it is sufficient

to condition on propensity scores P(X) to estimate HTE. So, the assumption in equa-

tion 1 becomes

(Y1, Y0) ⊥⊥ D|P(X) (3)

In fact, propensity scores allow to summarize the relevant information in the possi-

bly high-dimensional covariates X (n× J) in a lower dimensional variable P(X) (n× 1),

to more easily balance covariates and ensure comparability of the units between the

treatment and control group.

KERNEL REGRESSION The kernel regression is a specific type of local regressions.

Local regressions are, in general, non-parametric statistical methods that estimate the

3I refer to the notation used by Xie et al. [2012].
4I refer to the definition used by Xie et al. [2012], even though this definition of propensity scores is

generally used and accepted.
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outcome Y locally, allowing for a non-linear relationship between the covariates and the

outcome. The idea is to estimate the outcome yi as a weighted average of the outcomes

of the observations “close” to i, meaning with values of X in a neighbourhood of xi.5

The kernel regression uses a specific weighting function, the kernel, in this algorithm.

More specifically, following the lines of Aman [2016], say we want to estimate the

function µ(X), where

Y = µ(X) + U (4)

with U being the random error component. We do so by modelling µ(x) locally at a

given x, applying a linear regression to the data close to x. This means that we consider

the linear regression

yi = α(x)− (xi − x)β(x) + ui (5)

for each xi with i = 1, ..., n to determine the local regression function α(x) for Y = y at

X = x. The local linear regression method leads to the minimization problem

min
n

∑
i=1

(yi − α(x)− (xi − x)β(x))2 K
(

x − xi

h

)
(6)

where K(·) is the kernel weighting function. It is a decreasing function of the distances

of xi from the point x, with h being the bandwidth that determines the amount of local

information used to determine the estimated outcome y. By solving the minimization

problem, we obtain the estimated regression function for Y at X = x,

µ̂(x) = α̂(x) (7)

and β̂(x) is the local slope. Iterating this process for each x in X we estimate a smoothed

curve of the outcomes Y.

REGULARIZATION, OVER FITTING AND CROSS-VALIDATION In general, machine

learning algorithms intrinsically perform regularization. Regularization is the auto-

5For simplicity, assume that here X contains only one variable.
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matic selection of relevant covariates performed by statistical methods, reducing errors

caused by over fitting. Over fitting, on the other hand, occurs when a model fits the data

too closely, hence it is unable to make accurate out-of-sample predictions and leaves

little to the interpretation of causal relationships. Selecting covariates implicates reduc-

ing the variance of the estimates and also the risk of over fitting, but possibly biasing

the results (as some information is “missing”). Hence, this creates a tradeoff between

bias (regularization) and variance (over fitting), which are in general inherently bal-

anced by machine learning algorithms. The next two paragraphs provide technical

examples of how this mechanism works.

Furthermore, cross-validation is a technique used in machine learning to evaluate the

performance of a model and provide for over fitting. In brief, it consists in dividing the

sample in multiple subsamples, or folds, and using some of them to train the model,

and the rest of them (generally, only one) to test it. This procedure is repeated many

times, each time with a different test set (Refaeilzadeh, Tang, and Liu, 2009).

LASSO REGRESSION The Least Absolute Shrinkage and Selection Operator

(LASSO) regression (Tibshirani, 1996) is a regularization technique typically used in

machine learning. It adds a penalization term to the residual sum of squares of the

regression, to inherently select the variables.

More specifically, to visualize how it works we look at the logit version of the

LASSO, as presented by Goller, Lechner, Moczall, and Wolff [2020] for propensity

scores estimation (see method 1.2.3).

Consider the minimization function

min
β

{
n

∑
i=1

[
−dixi + log(1 + exp(xiτ))

]
+ λ

J

∑
j=1

|τj|
}

(8)

where d is an observation of the treatment variable D, and τ is the coefficient measur-

ing the relationship between the covariates X and the treatment. The first summation

term corresponds to the residual sum of squares, while the second one is the penaliza-

tion term, controlled by λ. This corresponds to the bias that will result in the estimates.
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By adding this term, the absolute value of the coefficients τj is shrank towards 0, re-

ducing their importance or altogether eliminating them from the model, resulting in

an automatic model selection.

Indeed, as λ increases, the penalization term will be higher and the regularization

will be more stringent. Hence, the estimates will have a lower variance and a larger

bias. So, the value of λ controls the tradeoff between variance and bias, and its choice is

crucial. The optimal choice of the λ is based on data, generally with a cross-validation

technique.

RANDOM FORESTS Random forests (Breiman, 2001) are a machine learning non-

parametric and non-linear estimation technique. They are constructed on regression

trees (Breiman, 2017), which are a specific version of decision trees where the vari-

able to be predicted is numerical. Decision trees, in general, are a common machine

learning algorithm that recursively splits the covariate space into intervals, while min-

imising the error in the prediction of the outcome variable. The final structure is a

rotated tree, where the initial trunk contains all the data, and each branch corresponds

to a split of the observations defined by a certain threshold or value (for categorical

variables) of one or more covariates. At the end of the splitting procedure, in the fi-

nal nodes (leaves), the predictions are given as the average of the outcomes of all the

observations included in that leaf. 6

A random forest is an ensemble of regression trees, meaning that it combines the

output of multiple trees, built on different random subsets of the covariate space. In

fact, the final model is obtained through an average of the many trees, to increase the

accuracy of the prediction.7

In random forests, the balance between bias and variance is controlled by the deep

to which each tree is developed - in other words, by the number of observations in the

6In simple words, an example of two branches with X being age and gender is: for male individuals
(branch 1), if they are older than 25 (branch 1.1), we predict ŷ1; if they are younger than 25, ŷ2 (branch 1.2); for
female individuals (branch 2), if they are older than 40 (branch 2.1), we predict ŷ3; if they are younger than 40, ŷ4
(branch 2.2).

7Note that the accuracy of a prediction is defined as the combination of (the opposite of) both its bias
and its variance (Walther and Moore, 2005). This concept is crucial and should be kept in mind for the
subsequent discussions in this study.
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final nodes used for each prediction. A higher number of observations in the leaves

determines a lower variance and a higher bias of the prediction. In fact, it indicates that

less splits have been made, and thus that intuitively the prediction is more “coarse”.

This mechanism, together with averaging between many trees to obtain the final forest,

entails the automatic selection of the variables and controls over fitting (Athey, 2019;

Goller et al., 2020).
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Chapter 1

Estimating Heterogeneous Treatment

Effects

This chapter pursues the first aim of this study, that of providing a survey of the main

methods used by economists to estimate heterogeneous causal effects, combining clas-

sic econometrics and newly proposed causal machine learning methods. Before delv-

ing into the technical review in Section 1.2, Section 1.1 provides an overall idea of the

methodological scenario.

1.1 An Overview

There is a diverse group of methods to estimate heterogeneous causal effects, that

differ substantially from one another yet share some basic features and are related to

each other.

First, there are regression-based methods (1.2.1, 1.2.2, 1.2.4), which either

assume to include all the relevant individual characteristics (under the exo-

geneity assumption) or consider unobservables that could in part drive the

heterogeneity, using an IV approach. This is the case of the marginal treat-

ment effect (MTE) estimator by Heckman and Vytlacil [2005], which is based

on a specific structural model. Alternatively, the idea behind regression-based
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CHAPTER 1. ESTIMATING HET. TREATMENT EFFECTS

methods is that we need to allow for non-linearities in the relationship be-

tween the response variable and the treatment, to obtain heterogeneous causal

effects. Some econometric ways to do so are including interactions in a linear

regression (for instance, discussed by Zhou and Xie, 2020) and the commonly

used non-parametric local regressions (Ferwerda, Hainmueller, and Hazlett,

2015; Hastie, Tibshirani, Friedman, and Friedman, 2009; Huber, 2023;

Imbens and Wooldridge, 2009; Shim and Lee, 2009).

Then, other methods consider matching the units between the treatment and

control groups based on similar characteristics X (1.2.3), to ensure the comparabil-

ity between the units and estimate treatment effects based on this comparison (e.g.

Abadie and Imbens, 2016; Xie et al., 2012).

In addition to this, some of these methods use propensity scores, as proposed by

Xie et al. [2012] (1.2.3, 1.2.4). Propensity scores replace the covariates X as balancing

measure (for instance, in a regression), because they summarize the relevant informa-

tion of the individuals in a lower-dimensional parameter easier to use, as explained in

the related paragraph above.

Finally, there are two main uses of machine learning for HTE estimation.

First, Cannas and Arpino [2019]; Goller et al. [2020]; Lee, Lessler, and Stuart [2010]

and McCaffrey, Ridgeway, and Morral [2004], among others, propose to use algo-

rithms from machine learning to perform the first-stage estimation of propen-

sity scores, thus as an auxiliary, possibly complementary tool to economet-

ric methods (like methods 1.2.3 and 1.2.4). Secondly, economists have been

using off-the-shelf causal machine learning algorithms (methods 1.2.5, 1.2.6),

that entirely substitute traditional ones (some examples are Athey and Imbens,

2015; Athey and Imbens, 2016; Wager and Athey, 2018; Athey, Tibshirani, and Wager,

2019; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018;

Bargagli-Stoffi, Cadei, Lee, and Dominici, 2020). Among others, Athey [2019], Huber

[2023] and Lechner [2023] discuss the use of these methods for HTE estimation.
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1.2. THE METHODS

1.2 The Methods

In brief, the methods to estimate HTE presented in this study are: a linear regression

with interaction terms; the MTE estimator by Heckman and Vytlacil [2005]; a matching

algorithm that then smooths the estimated effects; a local regression applied to the

treatment and control group, with differencing; the double machine learning algorithm

by Chernozhukov et al. [2018]; and the causal forests algorithm by Wager and Athey

[2018].

Also some insights on how each method relates to the others and when it is most

suitable are given.

1.2.1 Including Interactions in a Linear Regression

The most simple way of estimating HTE is to include interactions terms between the

treatment and the covariates in a basic linear regression. Indeed, if we linearly regress

Y on the treatment D and the individual characteristics X, the coefficient of the treat-

ment variable will give us an estimate of the average treatment effect (ATE), as it is

equal to Ŷ1 − Ŷ0. We shall include in the regression an interaction term Xj · D, with

j ∈ [0, ..., J], where Xj is a categorical variable or a discretized one with K groups or in-

tervals, across which the treatment effect is expected to vary. The resulting regression

is

Y = α + βX + δ0D + δjXjD + ϵ

Estimating it will give us an estimate of the treatment effect for each category in

Xj. The k-th estimate of the HTE will be equal to δ0 + δj,k, with k = 1, ..., K.

The main drawback of this method is that it assumes linearity in the relationship

between the outcome Y and the treatment and covariates, which could bias the results

(Zhou and Xie, 2020). Moreover, it requires to know a priori which is the individual

characteristic responsible for the heterogeneity, and this needs to be categorical or to be
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discretized. So, the method is a good solution for small and simple datasets, providing

very clear results, but it is not suitable for more complex studies.

1.2.2 Marginal Treatment Effect Estimator

The marginal treatment effect (MTE) estimator proposed by Heckman and Vytlacil

[2005] is a novel and advanced version among the IV approaches, implementing

a local IV. It generalizes the ATE and LATE estimators, as they can be obtained as

a weighted average of the MTE. The model on which the MTE is based combines

treatment effect literature with structural estimation. Indeed, it allows for the selection

into treatment to be determined by a decision rule (structural part), and this choice,

as well as potential outcomes, can be influenced also by unobservables, relaxing

the exogeneity assumption. Here, the MTE method is explained on the lines of

Carneiro, Heckman, and Vytlacil [2011].

First, consider the regression

Y = α + δD + ε (1.1)

where δ is the effect of the treatment on the outcome. Define potential outcomes as

Y1 = µ1(X) + U1,

Y0 = µ0(X) + U0

(1.2)

where U1, U0 are the unobservable components influencing potential outcomes and

Y1 − Y0 = δ. Furthermore, consider the latent variable choice model

ID = µD(Z)− V (1.3)

and the decision rule

D = 1 if ID ≥ 0; D = 0 otherwise (1.4)
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Notice that the unobservable component in the choice model V collects unobserved

effects that make the individual less inclined to be treated, and define

UD ≡ FV(V) (1.5)

where FV is a strictly increasing function. Then the propensity scores P(Z) are esti-

mated with the instrument Z, getting

P(z) ≡ Pr(D = 1|Z = z) = FV(µD(z)) (1.6)

Finally, the MTE, defined as

MTE(x, uD) ≡ E(δ|X = x, UD = uD) (1.7)

can be estimated as a function of propensity scores and the unobservables. Indeed,

we consider the case in which the propensity score equals the value of the unobserv-

able component, p = uD, i.e. when the individual is indifferent between being treated

or not. So, we are able to estimate the MTE for the indifferent individuals at different

values of the propensity score, as

MTE(x, p) =
∂E(Y|X = x, P(Z) = p)

∂p
(1.8)

for P(Z) = p and X = x. Indeed, P(Z) is referred to as a local IV. The group of

individuals who are indifferent between being treated or not, for which we estimate

the MTE at different values of the propensity score, are the relevant ones policy-wise,

because they are the ones who, at the margin, would change their mind if treated, and

let us estimate the optimal extent to which the policy should be applied.

Compared to the others, this method is a more structural approach and it relaxes

the exogeneity assumption, which most likely does not hold in reality. This allows

for a greater economic interpretability of the results and to apply the method to more
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datasets and studies. Alongside this, Zhou and Xie [2016] discuss in detail the differ-

ences between the following propensity scores-based methods (1.2.3 and 1.2.4) and the

MTE, also finding that the former two are valid even under some violations of exogene-

ity, partly decreasing the distance between the applicability of the two approaches.

1.2.3 Matching on Propensity Scores

Matching is a non-parametric statistical technique that directly compares (groups of)

units to estimate heterogeneous treatment effects as the difference in their outcomes,

for each match. Xie et al. [2012] propose to use propensity scores to match the units

and then smooth the resulting estimates of the treatment effects.

An intuitive idea of the rationale behind this method is provided by D’Agostino Jr

[1998]. Individuals in the two groups with equal propensity scores have equal proba-

bility of being treated or not, as if they were randomized into either of the two groups.

Randomized experiments, in fact, entail to randomly assign units to the treatment and

control group, ensuring that on average there are no systematic differences between

them. Thus, matching units on their propensity scores allows to directly compare the

outcomes of each match of treated and non treated individuals and estimate the treat-

ment effect.

The algorithm works as follows. First, it requires to estimate P(X) and to match

treated and non-treated units with the 1:1 matching framework. 1 Then, it computes

estimates of the HTE as the difference in the outcomes of each pair of units, ∆y =

y1 − y0, getting individual-level information on the treatment effect. Finally, we fit

a local regression of ∆y on ˆP(X), to obtain a smoothed curve of the treatment effect

heterogeneity.

The first-step estimation of propensity scores can be performed with many algo-

rithms. A traditional approach is to use a logistic regression, as in Xie et al. [2012].

Alternatively, more advanced algorithms like a LASSO regression or random forests

can be used, as in Goller et al. [2020] and Knaus et al. [2020]. The implications of the

1See Xie et al. [2012] for more detail on the many matching types and algorithms that can be used.
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choice of the algorithm to predict propensity scores are discussed in the next chapter,

in Section 2.3.

1.2.4 Local Regression with Differencing

Another option economists have is to use local non-parametric regressions on propen-

sity scores, as presented by Xie et al. [2012] as “Smoothing - Differencing method”. The

fundamental concept behind this method is to use a local regression to allow for a non-

linear relationship between the covariates and the response variable, as explained in

the paragraph on the kernel regression.

In fact, the first step consists in estimating P(X), with the algorithms discussed

for method 1.2.3. Then, we fit two local regressions of the outcome Y on ˆP(X) for the

treatment and control groups separately, getting two smoothed curves of the fitted

values. Finally, we take the difference between the two regression lines over the

common support of ˆP(X), to get the estimates of HTE for each value of the propensity

score.

This approach can be considered as an extension of the interactions method 1.2.1.

Indeed, including interactions in a linear regression is a way of allowing for a piece-

wise linear relationship between D and Y, where the slope (the estimated coefficient)

can change at different values of Xj (the variable giving the heterogeneity). Local

regressions extend this idea in a non-parametric form, allowing for a non-linear re-

lationship over the whole range of X, so they relax further the functional assump-

tions on the relationship between Y and D. A further development of this approach

are machine learning algorithms that are based on interactions, like causal forests by

Wager and Athey [2018] that are presented below (method 1.2.6).

1.2.5 Double Machine Learning

The first off-the-shelf causal machine learning method is double machine learning

(DML), first proposed by Chernozhukov et al. [2018].
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The concept at the heart of this method is not far from the idea explained at the end

of Section 1.2.3, i.e. combining machine learning and econometric methods, using the

former to estimate nuisance parameters. 2 However, these estimates may be biased,

as explained in the paragraph on regularization and further discussed below (Section

2.3). Indeed, DML is a more complete algorithm that uses a doubly robust approach and

an orthogonal estimator of treatment effects to provide unbiased treatment effect esti-

mates. Doubly robust methods (see for reference Huber, 2023; Kennedy, 2023) propose

estimators that are a function of both propensity scores and potential outcomes, thus

requiring that either one of the two models is correctly specified, being more robust to

model mis-specification (and biased estimates) than previously discussed methods.

Technically, the DML method consists in a two-step estimation of treatment effects.

First, we estimate the (potentially) high-dimensional propensity scores and potential

outcomes using algorithms from machine learning (again, like a LASSO regression or

random forests). Then, we plug the residuals from these estimations in a residual-on-

residual regression, obtaining a score function that is Neyman orthogonal, thus it is

not sensitive to the possible biases in the nuisance parameters estimates. Lastly, it uses

cross-validation techniques to correct for over fitting.

Finally, for what regards the second-stage model to estimate the treatment effect,

the DML approach has been analyzed in multiple papers in the literature. The original

paper Chernozhukov et al. [2018] considers the case of estimating the ATE or a low

dimensional LATE. Instead, in the specific case of HTE estimation, the online article

Ahmed [2022] proposes to use an interaction model in the second step to allow for

non-linear relationships, so it would be an evolution of method 1.2.1. Huber [2023]

suggests to regress the score function defining the ATE on X or on a subset of it to get

an estimate for HTE. Nie and Wager [2021] considers the case in which the function

identifying treatment effects can be modeled through a kernel regression, and thus

augment method 1.2.4 above. Lastly, Wager and Athey [2018] models treatment effects

2Nuisance parameters are a subset of the parameters of a model (here, propensity scores and potential
outcomes) that are needed for the model specification, but only in order to estimate other parameters,
the ones which we are interested to inference (here, the treatment effects).
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with a causal forest, which we present in the next section.

1.2.6 Causal Forests

Another causal machine learning method to estimate heterogeneous treatment effects

are causal forests, proposed by Wager and Athey [2018]. Causal forests are an adapta-

tion of the common machine learning algorithm of random forests to causal inference.

In causal forests, briefly, the “leaves” of each tree give the estimates of causal effects

rather than estimates of the outcome Y. The splitting algorithm, in fact, maximizes the

heterogeneity in the treatment effect, instead of minimizing the prediction error as in

random forests. Thus, the estimated treatment effect varies across different values of

the covariates in X. Moreover, the algorithm is “honest”, in the sense that for each

causal tree, the sample used for prediction is different from the samples used to build

the trees and split the covariate space.

Indeed, causal forests can be seen as a machine learning version of allowing for

non-linearities in the relationship between X and D, and, in this view, a development

of the interaction method 1.2.1 and to some extent the local regression method 1.2.4. As

Wager and Athey [2018] explains, in fact, this algorithm is close to kernels and match-

ing in that they estimate the parameters as a weighted average of “nearby” observa-

tions, but they determine which observations receive more weight based on data, that

is particularly important in complex and high-dimensional settings.
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Chapter 2

The Impact of Causal Machine

Learning on Econometrics

Some of the methods presented come from the emerging area of causal machine learn-

ing. As suggested above, empirical economists have diverging opinions on its use,

and what is the impact of (causal) machine learning on empirical economic research

is still debated (Athey, 2019; Desai, 2023; Dorie et al., 2019; Heckman and Pinto, 2022;

Marginal Revolution University, 2022).

This chapter aims at shedding light on whether and how machine learning methods

can be used beneficially in empirical economic research.

First, Section 2.1 presents how machine learning tools relate to econometric ones;

then Section 2.2 dives into the potential gains and losses of machine learning for empir-

ical economics, outlining the ongoing debate; lastly, Section 2.3 discusses in this regard

the machine learning methods considered in the previous survey, using evidence from

the empirical literature.

2.1 Are They Even Different?

S. Athey, while discussing the impact of machine learning on economics, questions if

machine learning really needed a new name other than statistics (Athey, 2019).

In fact, the basic algorithms behind machine learning are not new to empirical
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economists, because they share the same root as statistical regression methods (Efron,

2020). Consequently, it is not always possible - nor necessary - to draw a line and clas-

sify each technique as either machine learning or econometric, as also arises from this

study. For instance, the LASSO regression is widely recognized as a machine learning

tool, but received some attention in the econometric literature before machine learning

arrived in this field. Even more strikingly, the cross-validation technique is viewed

as a fundamental part of machine learning algorithms, but has been historically used

in economics, for example to determine the bandwith for a kernel regression (Athey,

2019).

Having said that, there are some criteria on which machine learning methods can

be distinguished from traditional econometric ones, and which justify the debate on

their use.

First of all, methods from machine learning are tailored to handle very complex

high-dimensional datasets, with a huge number of covariates and observations, com-

pared to smaller datasets traditionally used in economic research (Desai, 2023; Efron,

2020).

Then, machine learning algorithms are focused on prediction, rather than on es-

timation (see Efron, 2020 for a detailed explanation of prediction vs. estimation in

general). This means that the concern of these methods is the goodness of fit of the

model, and they aim at obtaining an accurate prediction of the outcomes (very high

explanatory power). On the contrary, as causal relationships are the main interest of

empirical economic research, classic econometric methods are focused on obtaining

unbiased estimates of the causal effects between variables, at the cost of the goodness

of fit of the model and of predictive accuracy of the outcomes (possibly low explana-

tory power). In fact, machine learning models generally include myriads of weak pre-

dictors, as opposed to econometric models that include only few strong explanatory

variables. Related to this, econometric models are based on statistical theory and the

estimators they provide have asymptotic properties, meaning they are asymptotically
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normal and their results can be inferred to a whole population. This is crucial for

economic causal inference, because for instance it allows to obtain confidence inter-

vals and perform hypothesis testing. True values of real causal effects are generally

not available, hence this property is particularly important to assess the quality of the

estimation. Traditional (predictive) machine learning algorithms do not have such fea-

tures, and therefore they are more suitable for simpler classification purposes, where a

ground truth (the observed outcomes) is available (Athey, 2019; Efron, 2020).

The last crucial point is that machine learning methods perform a data-based

model selection, after a (large) set of covariates is provided by the researcher. This,

intuitively, relates to the very high goodness of fit typical of these models. Also, this

determines a tradeoff between over fitting and regularization, which machine learning

algorithms intrinsically balance. Please refer to the paragraph on regularization and

over fitting for a more detailed explanation of this mechanism. On the contrary,

empirical economists generally specify only one model, then use all the data for the

estimation, and inference the results based on statistical theory (Athey, 2019). This is

also related to the typically smaller size of datasets used with econometric methods,

compared to machine learning ones.

Recently a new movement is emerging, combining machine learning algorithms

with causal inference. The so-called causal machine learning is a new research

area that is adapting machine learning tools to estimate causal effects (some lead-

ing examples are Athey and Imbens, 2015; Athey and Imbens, 2016; Athey et al., 2019;

Bargagli-Stoffi et al., 2020; Chernozhukov et al., 2018; Wager and Athey, 2018). In do-

ing so, the objective is to harness the strengths of machine learning, while providing

for some of the shortcomings these algorithms present when applied to economic re-

search. For instance, Wager and Athey [2018] adapt random forests providing causal

forests with a tractable asymptotic theory and allowing statistical inference. In fact

both causal forests and the DML method presented above belong to this movement

(methods 1.2.6 and 1.2.5). Therefore, causal machine learning is likely to further nar-
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row the distance between the econometric and machine learning traditions (Athey,

2019; Lechner, 2023).

2.2 The Debate

Based on the aspects that distinguish machine learning methods from econometric

ones, some potential gains together with some limits of using machine learning in

economic research arise; these outline the vivid debate going on among economists on

this matter.

One of the arguments of economists that support the use of machine learning for

empirical economic research is the data-driven model selection. In fact, it is more solid

than classic procedures and it avoids economists’ custom of checking alternative mod-

els “behind the scenes” (Athey, 2019). Moreover, this property has many implications.

It avoids imposing functional model assumptions, as the functional form is at least in

part derived from the real distribution of data. Indeed, these algorithms flexibly model

the (possibly complex) relationships between the variables. This also results in captur-

ing non-linearities or other complex structures that could not be discovered in advance,

and that traditional methods could fail to detect. This, for instance, is particularly rele-

vant to detect heterogeneity in the policy effects (Desai, 2023; Mullainathan and Spiess,

2017). In fact, S. Athey precisely maintains that regularization and automated model

selection have several advantages on traditional methods and will likely become part

of standard empirical practice in economics (Athey, 2019).

On the other hand, economists who are reluctant about the use of machine learn-

ing bring the main, strong argument of interpretability. Being able to interpret the

algorithm with which some predictions are obtained is crucial for economic research,

that tackles questions on causal effects rather than prediction. Machine learning al-

gorithms, however, are traditionally not interpretable, as the algorithm they use is

not known in detail to the researcher and as they do not provide causal effects es-
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timates. Moreover, the lack of a structural component in machine learning mod-

els impairs further interpretability of causal relationships (Heckman and Pinto, 2022;

Marginal Revolution University, 2022).

However, causal machine learning algorithms overcome this hurdle, at least in

part. This is because they are tailored to estimate causal effects and adapted to present

asymptotic theory and perform causal inference, as explained at the end of the previ-

ous section. Therefore, they leverage the accuracy of the prediction and the flexibility

typical of machine learning algorithms to produce accurate estimates of causal effects

and aid econometrics in finding the correct functional form to achieve unbiasedness

(Athey, 2019).

Finally, as explained above, machine learning algorithms are tailored to handle

huge datasets, and especially for a number of covariates that is much larger than

the number of observations. This feature could be void for economic studies, which

are generally based on few covariates. For instance, in the specific example of esti-

mating policy effects, getting effects estimates for very specific groups of the pop-

ulation identified by many characteristics could be useless and not actionable upon

(Marginal Revolution University, 2022). In fact, with simpler datasets classic econo-

metric methods are sufficient, and machine learning ones do not appear to be use-

ful (Desai, 2023). At the same time, nowadays there is an easier and easier access to

datasets that are many orders of magnitude larger than before. Indeed, machine learn-

ing tools combined with newly available data sets could change economic research

providing new questions, new approaches, and more interdisciplinary works (Athey,

2019).

2.3 Empirical Evidence

The final question addressed now is how the specific methods considered in this study

relate to the discussion on machine learning applied to economic research, and thus

whether they improve heterogeneous causal effects estimation.
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First of all, the machine learning methods considered overcome at least in part the

non-interpretability argument discussed in Section 2.1. Causal forests do so by pre-

senting asymptotic properties. Also using machine learning for first-stage estimation

of nuisance parameters, either with DML or as part of the matching or local regression

methods, overcomes this limit. As explained by Lechner [2023] and Lee et al. [2010], in

fact, in the first step we are not interested in the causal relationship between controls

X and the treatment or the outcome. In the second step, instead, we want to be able

to understand the causal effect of the treatment on the outcome, and thus we imple-

ment traditional more interpretable econometric methods to estimate treatment effects.

Furthermore, there is some empirical literature that compares machine learning

algorithms to a logistic regression to estimate propensity scores.

Goller et al. [2020] find that the LASSO regression performs particularly well

compared to a logistic regression. Random forests, on the other hand, appear to lead

to misleading results especially when the share of treated is low, possibly because the

algorithm does not split deep enough to properly balance covariates. 1 Moreover,

they conclude that since knowing a priori which of the many methods works best,

implementing off-the-shelf causal machine learning algorithms like DML or causal

forests could be more convenient. Lee et al. [2010], instead, find that ensemble

methods, like random forests or an advanced version of regression trees, show the

best performance in balancing covariates to then estimate effects, recommending them

for propensity scores estimation. Cannas and Arpino [2019] provide similar results,

preferring random forests to other machine learning algorithms and recommending

them in place of logistic regressions to estimate propensity scores. Lastly, Lee et al.

[2010] find that the random forest algorithm performs better than others also for

smaller datasets (with n = 500).

1With a small share of treated observations, splitting much the covariates space may easily lead to
overfitting, as few (treated) observations would remain in each leaf
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Having said that, a matter to be addressed is the presence of a regularization bias in

propensity scores estimates. Indeed, as explained in the paragraph on regularization

and over fitting, the inherent variable selection of machine learning algorithms

enhances prediction accuracy, but possibly produces biased estimates. Goller et al.

[2020] maintains that it is necessary to correct for this bias in propensity scores as

it can translate to a higher bias in the treatment effect estimates. To this end, they

implement a matching estimator with bias adjustment, but in the case of average

treatment effect estimation. So, further work should be conducted to obtain HTE

bias adjusted estimators, possibly on the lines of the matching or local regression

algorithms (methods 1.2.3 and 1.2.4). At the same time, Lee et al. [2010] consider that

also econometric methods can lead to biased estimates if the modelling assumptions

on which they are based are incorrect. Indeed, they compare a logistic regression

without including interactions or non-linearities (powers of X) to many machine

learning algorithms. They find that when the real data presents non-linearity, the

logit model gives the highest bias; also when there is linearity, its performance is

comparable to that of some of the other methods. So, they implement the machine

learning algorithms without correcting for the bias when estimating treatment effects.

Thus, machine learning algorithms could possibly be implemented for first-stage

estimation, jointly with the matching 1.2.3 or local regression 1.2.4 estimators for HTE,

without the need of bias adjustment.

For what regards the DML and causal forests methods, there is not much empir-

ical literature on comparisons to classic econometric approaches, especially for het-

erogeneous effects in economic studies. This may be because they are off-the-shelf

causal machine learning algorithms substituting econometric ones, and also because

they have been proposed very recently.

However, there are some papers that implement these algorithms for HTE estima-

tion, with promising results.

Two of the few examples for the DML algorithm are Fuhr, Berens, and Papies [2024]
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and Wang, Huang, and Zhang, 2023. Both papers find that it gives more accurate re-

sults and that it fits non-linear relationships better than econometric methods. In the

first paper, moreover, they state that structural analysis and assumptions are needed

behind the application of this method, because it doesn’t account for unobserved con-

foundness (as, for comparison, the MTE method 1.2.2 does). Indeed, as discussed by

Lechner [2023], the upside of this algorithm is that it can be used as an helpful tool

to human decision making, especially when combined with decision trees (or, equiva-

lently, random forests), that clearly provide an idea of the criteria used by the machine

learning algorithm, so that the human can understand it.

Among the studies implementing causal forests, Davis and Heller [2017] find

that causal forests identify treatment heterogeneity that other interaction approaches

would have missed. Bonander and Svensson [2021] conclude that the method is suit-

able for estimating heterogeneity, but that one of its limits is that it performs poorly in

low-dimensional datasets. Additionally, there are some papers in the medical litera-

ture comparing the performance of causal forests to simple regressions. An example

is Elek and Bíró [2021] 2, that maintains that, compared to a full interaction linear

regression model, the automatic selection of which variables give the heterogeneity

performed by causal forests improves statistical power, and they are therefore pre-

ferred. Venkatasubramaniam, Mateen, Shields, Hattersley, Jones, Vollmer, and Dennis

[2023], instead, in a similar study conclude that causal forests should not be used

alone, but always compared to classic regression methods, that in their evaluation

performed better.

On the whole, it is found that the methods from the machine learning literature con-

sidered in this study allow for interpretability of the causal treatment effects, while har-

nessing the higher predictive accuracy of machine learning algorithms. Moreover, the

empirical evidence shows that estimating nuisance parameters with machine learning

gives more accurate results and better covariate balance, and both LASSO regression

2It is a medical study, but given the limited number of covariates included (around 10) its results are
relevant also for economic applications.
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and random forests are preferred to a logistic regression for this task. Their perfor-

mance, however, varies depending on the studies, and using off-the-shelf causal ma-

chine learning methods may be recommendable. These, in fact, appear to perform well

for heterogeneous effects estimation, also detecting heterogeneity patterns that classic

econometric methods miss.

2.3.1 Discussion

From this study it arises that causal machine learning can bring fascinating improve-

ments to empirical economic research. The main benefit it brings is the ability to model

the data with highly flexible functional forms. This enables the researcher to discover

hidden patterns of the relationships between variables, that are the basis of empiri-

cal economics questions. This is especially true for the investigation of heterogeneous

causal effects, as the empirical results support. Furthermore, causal machine learning

provides empirical economists with a solid model selection procedure based on data

and very accurate estimations of causal effects.

Alongside this, machine learning may also open new horizons for empirical eco-

nomics, introducing new approaches and questions, possibly exploiting the abundance

of very precise data available today.

It remains true that the methodological choice depends largely on the character-

istics of the data and the study that is being conducted. Hence, the best choice is to

integrate the two disciplines to leverage machine learning tools when they are most

suitable, and use econometric ones when they are sufficient. Indeed, economic and

statistical theory must remain the foundation of the model choice procedure.

As a last consideration, it is evident that more work should be conducted in the

direction of embodying machine learning in econometrics and empirical economics, as

this integration presents some frictions. Nevertheless, even from the early steps taken

so far, it is evident that causal machine learning can greatly contribute to econometrics,

suggesting that this direction should be pursued further.
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Conclusions

Investigating heterogeneous policy effects is highly relevant for empirical economic

research, and many methodological developments have been done in the last decades

concerning this task (Zhou and Xie, 2020). Not only, but heterogeneous effects esti-

mation is also closely related to the recent advent of machine learning techniques in

econometrics, which has triggered a vivid debate among experts on the use of causal

machine learning (Athey, 2019; Marginal Revolution University, 2022).

In light of this, this study has first reviewed the main methods to estimate het-

erogeneous causal effects, combining the two disciplines, and then it has inquired

whether and how causal machine learning can benefit empirical economic research.

In summary, the main methods economists have to estimate heterogeneous causal

effects are: including interactions in a linear regression, mostly suitable for simple

datasets; the marginal treatment effect estimator, a structural approach that allows for

unobserved resistance to treatment (by Heckman and Vytlacil, 2005); a matching al-

gorithm and a local regression method based on propensity scores, which are flexible

statistical approaches that can be combined with machine learning tools (by Xie et al.,

2012); the causal machine learning algorithms of causal forests, an ensemble of re-

gression trees adapted to causal inference (by Wager and Athey, 2018), and double

machine learning, entailing machine learning estimation of nuisance parameters and

the use of econometric models for the second-stage estimation of treatment effects (by

Chernozhukov et al., 2018).

Moreover, it results that causal machine learning can greatly aid econometrics.
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Indeed, the main benefits of these methods are to flexibly model especially high-

dimensional data and to capture hidden patterns of heterogeneity. Also, their high

prediction accuracy can be leveraged for estimating causal effects. This is supported

by the empirical literature evidence, especially for causal forests and double machine

learning. Hence, although further work is needed to fully combine these disciplines

and economic theory must remain at the basis of model choices, integrating causal

machine learning in empirical economics is a direction that should be pursued.

A proposed future development of this study is to conduct an empirical applica-

tion of the methods considered, to compare their performances on the same dataset,

and possibly also including other promising methods like bayesian additive regres-

sion trees by Hill [2011].
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