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Abstract

This work aims to study and simulate in Python the Stochastic Block Model and some
of its extensions. Firstly, an introduction to random graph theory and Network science is
presented, with the purpose of having a preliminary overview of the field. Thereafter, the
Stochastic Block Model is analyzed, both as a random graph model and as a method of
doing community detection on graphs, and for this purpose, following a Bayesian approach,
a Gibbs sampler is constructed to make inference on graphs. In the last two chapters two of
the extensions of the Stochastic Block Model are studied, namely the MFM-Stochastic Block
Model, preceded by an introduction to Mixture of Finite Mixtures and on Dirichlet Mixture
Processes, and the Degree Corrected Stochastic Block Model. For the latter, differently from
the first two, a Maximum Likelihood approach is followed, and a greedy algorithm is con-
structed.

All the models were simulated in Python and their implementation can be found at

https://github.com/LUKPROtm/Stochastic-Block-Model-for-community-detection-in-graphs


https://github.com/LUKPROtm/Stochastic-Block-Model-for-community-detection-in-graphs
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Chapter 1

Random graph theory and Network
science

1.1 Introduction

The field of random graphs theory started with Pal Erdés (1913-1996) and Alfréd Rényi
(1921-1970) in 1959-1961, with a series of influential papers: On random graphs I (1959) [1],
On the evolution of random graphs (1960) [2], On the evolution of random graphs II (1961)
[3] and On the strength of connectedness of a random graph (1961) [4]. At the beginning
random graphs theory was used by Erdos and Rényi to prove deterministic properties of
graphs using the Probabilistic method: for instance, if it is possible to show that a random
graph has a certain property with positive probability, then it must exist a graph with that
property. However, it was clear already that the study of random graphs could be used to
model real-world networks, which is what we are interested in our work. In this chapter we
mention some basic concepts of random graphs theory and of network sciences, in order to
have an introduction to the topic and to be able to understand better the context of the

main subject of this work: the Stochastic block model for community detection on graphs.

1.2 Random Graphs theory

1.2.1 Definitions

A random graph is a graph-valued random variable; it can be either described simply by a
probability distribution over graphs or by a random process which generates the graph.
A random graph model is a family of probability distributions over graphs; examples of ran-

dom graph models are the Erd6és-Rényi random graph models, which are the main subjects



of this chapter and the various Stochastic Block models, which will be the main subjects of

the next chapters.

The Erdos—Rényi random graph models are the building blocks of the study of networks and
random graphs theory. There are two different Erdés—Rényi random graphs models: the

uniform random graph, denoted G(n, m), and the binomial random graph, denoted G(n, p).

Definition 1.2.1 (Erd6s-Rényi random graph model: uniform random graph). Let %, ,,, be
the family of all labelled undirected graphs with vertex set V.= {1,2,...,n} and exactly m
edges, 0 < m < (Z) Then, the uniform random graph G(n,m) assigns the same probability
to every element of 9, ,,. That is, Vg € 9, m

Pr(g) = <(g))_l (1.1)

m

Equivalently, we start with an empty graph on V, and insert m edges in such a way that all

possible ((;2;)) choices are equally likely.

Definition 1.2.2 (Erdés—Rényi random graph model: binomial random graph). Let 4, be
the family of all labelled undirected graphs with vertex set V.= {1,2,...,n}. Fiz 0 <p < 1.
Then the binomial random graph G(n,p) is constructed such that, for all (72‘) pairs of vertices
1,7 €V, there is an edge between i and j with probability p, independently from all the other
edges.

Equivalently, we assign to each graph g € ¥, the probability

Pr(g) = p™(1 —p)&) (1.2)

where m is the number of edges of g.

Therefore, G(n, m) fixes the number of edges, while G(n, p) fixes the probability of each edge.
Through the rest of the work, we will use mainly the G(n, p) model and we will refer to it as

the Erdés—Rényi random graph model.



1.2.2 Properties of the Erdos—Rényi random graph

We now briefly mention some properties of graph in generals and how they apply to Erdos—Rényi

random graphs.

Degree distribution

Definition 1.2.3 (Degree). Given a graph G = (V, E), the degree of the vertex i € V,
denoted k;, is the number of edges connecting i to other vertices. That is, the degree k; of a

vertex 1 is defined as
ki=#{jeV:{ij} € E}. (1.3)

In case of a directed graph, one has to consider two different degrees, the incoming degree

ki and the outgoing degree k¢“*; in this case the total degree k; is the sum of the two.

Definition 1.2.4 (Degree distribution). Given a graph G = (V, E), its degree distribution
D0, Py -y Pmaz 1S the distribution of the degrees of the vertices. In particular, if |V]| = n

pr = "%, where ny is the number of nodes with degree k.

That is, if we pick a vertex at random, it will be of degree k£ with probability pr. We denote
the average degree (k), which is by definition the expectation of the degree distribution.

It is clear from the definition that the degree distribution of an Erdés—Rényi random graph
G(n,p) is a Binomial(n — 1, p), and therefore its (expected) average degree is (k) = p(n —1).
In the large n and small p limit, that is when considering sparse graphs since (k) < n (which
will be the case for real networks), the degree distribution of an Erdés—Rényi random graph
is well-approximated by a Poisson distribution with parameter (k). This comes from the fact
that we can view the Poisson()\) distribution as the limiting distribution of a Binomial(n, 2)
as n goes to oo. Therefore we say that the Erdés—Rényi random graphs follow a Poisson

distribution, that is, for K =10,....n — 1



Size of the largest component

A fundamental property of the G(n,p) model is that it undergoes a phase transition for the
size of the largest connected component. Indeed, fix an expected degree (k) and consider the
sequence of random graphs (G(n,p,)),cny With p, = % so that the nodes of any random
graph in the sequence have an expected degree of (k). For a given n, let L,, be the size of
the largest connected component of G(n, p,,). Then, as n goes to oo, depending on (k), there

could be different regimes (properties are with probability 1 as n goes to co):

1. Subcritical regime: (k) < 1. In this regime L, = o(n), which means that all the

connected components have a negligible size with respect to n.

2. Critical regime: (k) = 1. Still L,, = o(n), even though in absolute terms there is a

jump in the size of L,

3. Supercritical regime: (k) > 1. The largest component contains a finite fraction of

vertices, that is, L, = cn with 0 < ¢ < 1. We call such a component a giant component.

4. Connected regime: (k) > log(n). The giant component absorbs all the vertices,

L, = n, the graph is connected.

Small world property

As we shall see later, often real networks show the small world phenomenon. Loosely speaking
we say that a graph is a small world if the average distance between any two pair of vertices is
much smaller than the total number of nodes n. This phenomenon is also called ”six-degree
separation” from the famous Milgram’s experiment in 1967 [5], where he tried to estimate
the average distance between people (where edges are social relationships), obtaining that in
the sample studied on average people even living in very different places of the United States
had a distance of 6 relationships, which is extremely small with respect to what one may

think. More formally, we define

Definition 1.2.5 (Walk). Given G = (V, E), a walk on G is a sequence of alternating vertices
and edges that starts with a vertexr and ends with a vertex such that consecutive vertices and

edges in the sequence are incident to each other



Definition 1.2.6 (Path). A path is a walk in which no edge is traversed more than once.

We define the length of a walk as the number of edges in the walk. It is clear that, if G is

connected, then there exists a finite-length path connecting any pair of vertices i,j € V.

Definition 1.2.7 (Geodesic distance). Given G = (V, E), for any pair of vertices i,j € V,
the geodesic distance of © and j is the length of the shortest path from v to j, that is, the

manimum number of edges that one has to travel to go from 1 to j

We denote by ¢ the mean geodesic distance in G. Since a priori G could be disconnected,
thus having some nodes with oo distance, in the mean we condition on the fact that the

geodesic distance is finite.

Definition 1.2.8 (Small World). Let (G,),>1 be a sequence of random graphs, with G,, =
(Vi, En) and |V,| = n. We say that (Gy),,5, is a small world if there exists a constant K < 0o
such that

lim P (¢, < Klogn) = 1. (1.5)

n—o0

Furthermore, we say that (Gy),>, is an ultra-small world if Ve > 0,

lim P (¢, <elogn) =1 (1.6)

n—00

Theorem 1.2.1 (Chung and Lu., 2002). If np, > ¢ > 1 for some constant ¢, then for the

G(n, p,) model £ is almost surely (1 + o(1)) (1(};%") provided lolgizn — 00 as n — 0.

Which means that the sequence of ER random graphs (G(n, p,)) defined before satisfies

nelN

logn 1
log (k) *

The fact that, in the supercritical regime an ER random graph model is a small world as

the small world property if (k) > 1, obtaining ¢ ~

n — oo, that is the average geodesic distance is exponentially smaller than the number of

vertices is something non-trivial at all. Our notion of distance is based on our experience on

n particular, Fronczak et Al. 2004 [6] found the analytical solution, which is

logn —~v 1
_ L 1.
¢ log(k) + 2 (17)

where v ~ 0.57722 is the Euler constant.



regular lattices, generally in 1D, 2D or 3D. For instance, in a regular d-dimensional lattice, [
scales as na. This means that in a regular d-dimensional lattice the average geodesic distance

between two vertices is much larger than the one in an ER random graph.

Clustering coefficient

Another important statistic of a graph is the clustering coefficient, which measures how much

the neighbors of a given vertex link with each other.

Definition 1.2.9 (Local clustering coefficient). Given a graph G = (V, E) the local clustering
coefficient of a vertex i € V is defined as

2M;

@:mw—n

(1.8)

where k; is the degree of vertex i and M; is the number of edges between the k; neighbors of 1.

Note that C; is in [0, 1], since ki(k;l) is the number of combinations without repetition of
pairs of neighbours of vertex ¢. For a given vertex i, C; is the probability that taking two
of its neighbors at random, there is an edge between them. The degree of clustering of a
graph is captured by the average clustering coefficient, denoted (C). The higher the average
clustering coefficient, the more neighbors connect with each other.

From the definition of the G(n, p) model, in particular from the independence assumption of
each edge, the expected local clustering coefficient of each vertex of an ER random graph is
Ci=p= % Therefore for a fixed (k), C; — 0 as n — oo. Thus, in a sparse ER random
graph (C) ~ 0.

1.3 Network science

Throughout this section, we will compare the ER random graph models with real networks
and we will consider different and more accurate models to describe the latter. A parenthesis
on the notation used: we will often use the words network, node and link to describe real
networks even though they have the same meaning of graph, vertex and edge.

Some examples of real networks studied in the literature are described in 1.1:



Network Nodes Links Type n m (k)
Internet Routers Internet con- Undirected 192,244 609,066  6.34
nections

WWW Webpages Links Directed 325,729 1,497,134  4.60

Power Grid Power plants, Cables Undirected 4,941 6,594  2.67
transformers

Mobile-Phone  Subscribers Calls Directed 36,595 91,826  2.51

Calls

Email Email ad- Emails Directed 57,194 103,731  1.81
dresses

Science  Col- Scientists Co- Undirected 23,133 93,437 8.08

laboration authorships

Actor Network Actors Co-acting Undirected 702,388 29,397,908 83.71

Citation Net- Papers Citations Directed 449,673 4,689,479 10.43

work

E. Coli Metabolites Chemical re- Directed 1,039 5,802  5.58

Metabolism actions

Protein Inter- Proteins Binding inter- Undirected 2,018 2,930  2.90

actions actions

Table 1.1: Examples of real networks. Taken from [7]

Most real networks satisfy the following properties: they are small worlds, in the sense that
¢ < O(logn), they have high clustering® and they are scale-free3. Moreover, in the majority
of cases 1 < (k) < logn, meaning that, if they were described by an ER random graph, they

would be in the supercritical regime (but not in the connected one).

Clustering

As we have seen so far, in the supercritical regime the G(n, p) model satisfies the small world
property, however it does not have high clustering. Intuitively, for a network to have nodes
with high local clustering coefficient means that, if a node ¢ has an edge with both nodes j and
k, then 7 and k are likely to be connected. It is quite natural to think that in real networks

this is the case: for instance, if I am a friend of both ¢ and j, then it is more likely that ¢ and

2Differently from what discussed so far, in network science the phrase ”small world” is often used not
only to indicate the property of having a low average distance between vertices, but it also requires the high
clustering property. However in this notation we will keep the two properties separated, calling only the first
one small world.

3 Actually, the universality of scale-free networks is controversial, see Broido and Clauset, 2019 [8], however,
the discussion is still valid.



j are friends. In contrast, the ER model in its complete randomness does not take it into
account. A notable extension of the Erdds—Rényi model which allows for high clustering is
the Watts-Strogarz Model (Watts and Strogarz, 1998 [9]). This model interpolates between
a ring lattice, which has high clustering but lacks the small world property, and an ER
random graph, which lacks clustering but is a small world. It goes as follows (see Figure 1.1
for an illustration): start with a ring of nodes and connect all the nodes with their nearest
neighbors and the second nearest ones. Then, rewire each edge with probability p (where p
is a parameter of the model) and connect that to a randomly chosen node. Note that with

p =1 we go back to the ER random graph.

Regular Small-world Random

p=0 >» p=1
Increasing randomness

Figure 1.1: Ilustration of the Watts-Strogarz Model. Image taken from [9].

Scale-Free property

The scale-free property is another important difference between the ER model and real
networks

Most real networks are sparse, i.e. (k) < n, therefore as before we will consider the Poisson
distribution to be the degree distribution of the binomial random graph. However, most
real networks do not follow a Poisson distribution. The first evident difference between the
degree distribution of most of real networks and the Poisson distribution is that, in the
latter, outliers are missing. Indeed, in a Poisson distribution, the tail decreases faster than

exponentially. Using Stirling approximation

k) = ~
p(k) 1 T

RS- <elik))k (1.9)



obtaining that for & > e (k), the term inside the parenthesis is smaller than one, and, as
k increases, p(k) decreases more than exponentially. If we take the WWW network as an
example (as studied by Albert et al., 1999 [10]), where each document (webpage) is a node
and there is a link between two documents if there is a "link” from one to the other, it is
clear that the variation in degree of the nodes is enormous: most of the webpages have only
a few links, while there are pages, such as Google or Facebook, that have a degree with a
completely different order of magnitude. If the WWW was described by a ER random graph,
the existence of these so-called hubs (nodes with very high degrees), would not have been
possible. The presence of hubs is verified for a large part of real networks.

The degree distribution of the WWW network is better approximated with a power law dis-
tribution, that is, a distribution of the form p, ~ k~7. We call scale-free the networks which
follow a power law with 2 < 7 < 3: the reason behind this name is related to the fact that,
for v < 3, the variance of the degree distribution is not finite and therefore it is impossible
to define a scale within which the degrees of the nodes are, in contrast to Poisson networks,
where the standard deviation is <k>1/ * and therefore nodes in the network have degree in the
“range” (k) & (k)"/*. Notice also that we are not interested in the case v < 2, since in this
regime also (k) is not finite.

In order to check whether a network is scale-free, it is useful to give a look at the so-called
log-log plot, where log(k) and log(py) are on the z and y axis respectively. Taking the log-
arithm from the definition of the power law, we have log(px) = 7log(k) + constant, that
is, a scale-free network should be well-approximated by a line on the log-log plot, while the
parameter v is the slope of that line. From this plot we can check that, for instance, the

WWW network is indeed a scale-free network.

Remark 1.3.1 (Ultra-small world property). Networks which follow a power law in the Scale-
free regime (2 < v < 3) not only are small words, but they actually are ultra-small worlds
(Cohen et al. 2003 [11]), indeed in this case € ~ loglogn. The presence of hubs is crucial in
reducing the average geodesic distance between nodes because they connect a large number of
small-degree nodes. This is a feature seen also in our life, as in the case of train stations (or
airports): in general we have many small train stations and a few very connected ones, the

hubs, and this structure dramatically reduces the average time needed to reach a destination.
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A network model that aims to explain the origin of the power law in real networks is the
Barabdsi-Albert model (Barabasi, Albert 1999 [12]). The two main mechanisms underlying
the model are: Growth and Preferential attachment. The first indicates that to obtain the
final network we start with a smaller one (even empty) and at every time step we add a new
node to it. The second implies that the newly added node will link more likely to nodes
with high degree: in particular, each new node will link to m existing nodes, and each link
connects to an existing node ¢ with a probability proportional to k;.

The final degree distribution obtained by the BA model is a power law with v = 3.

Remark 1.3.2 (Degree Distribution of Real Networks). Real networks very rarely follow a
pure power law, indeed there are two main recurring deviations: Low-degree saturation which
means that for k < ks pr is flat making the network have fewer small degree nodes than
expected from a pure power law, and High-degree cutoff, which is a drop in py as soon k > ke,
leading to fewer high degree nodes with degree greater than k., and this can be due to inherent

limitations in the number of links a node can have.

11



Chapter 2
Stochastic Block Model

2.1 Introduction

We now turn our attention to the community detection task on graphs, that is, we want
to find a way of grouping the vertices of a graph according to some criterion. There are
two main classes of community detection methods for general data: model-based methods
and non-model-based methods. In model-based methods one assumes there is a true model
underlying the distribution of the data, while in non-model-based methods it is not assumed
any underlying model but instead one groups elements according to some similarity measure.
Among the model-based methods on graphs, the stochastic block model is the most used,
while for non-model-based methods spectral clustering is the most relevant on graphs, see for
instance von Luxburg, 2007 [13], even though another used option is hierarchical clustering,
see for instance Girvan, 2002 [14] or Newman, 2004 [15]. More recent studies tried also to
build clustering algorithms on graphs based on Graph Neural Networks, see Tsitsulin et al.,
2023 [16]. Since non-model-based methods try to group data points based on some similarity
measure, they would, in the graph scenario, group together nodes that are highly connected to
each other, while, for model-based methods, this is not always the case, indeed the stochastic
block model is able to recover structures with low intra-connectivity but sharing similar
patterns and therefore, for this reason, it can be used with the broader scope of discovering

the latent structure of the network.

2.1.1 Lineage of the Stochastic Block Model

The Stochastic Block Model was formalized by Holland et al. (1983 [17]) as a random
graph model, while Wang and Wong (1987 [18]) were the first to apply it to real data but

12



assuming to know a priori the block structure, that is, the group membership. Snijders and
Nowicki (1997 [19]) and (2001 [20]) studied a posteriori blockmodeling, which is what we
are interested in: inference of the block structure, and they did it both in the case of the
number of communities k = 2 and k > 2. In its simplest case of binary graphs (graphs with
binary adjacency matrix), the model is referred to as Bernoulli SBM. Binary graphs have
been studied by numerous models, among all, a relevant extension of the SBM on binary
graphs is the mized membership models, studied by Airoldi et al. (2008 [21]); Fu et al. (2009
[22]); Xing et al. (2010 [23]); Fan et al. (2013 [24]) and Li et al. (2015 [25]), which allows
each node to belong to multiple communities; while in practice, the most used extensions are
the Degree-corrected SBM of Karrer and Newmann (2011 [26]) and the Microcanonical SBM
in its nested version (Peixoto, 2017 [27]). Some extensions focused on modelling the number
of communities k, as the MFM-SBM of Geng et al. (2019 [28]), and in general, many more
extensions have been studied.

In our analysis, we will discuss in Chapter 2 the original model proposed by Snijders and
Nowicki, in particular in section 2.2 we introduce the basic model for undirected binary
graphs and in section 2.3 we extend it to more general graphs and relations. In Chapter 3
we focus on the MFM-SBM, which allows us to include in the model the fact that we don’t
know a priori the number of communities, while in Chapter 4 we study the Degree-Corrected

stochastic block model.

2.2 The Bernoulli Stochastic Block Model for undi-
rected graphs

In this section we introduce the simplest Stochastic block model, the one called Bernoulli
SBM for undirected graphs. In the next section we extend in its full generality and for this
reason, we omit the discussion of how to make inference on the first as it will be easy to
apply the general derivation to this specific case.

We have seen that in an Erdés-Rényi random graph, any pair of nodes has a probability of
being connected which is denoted p and it is the same for every possible pair. Intuitively
speaking, in the stochastic block model we assign a class at each node of the graph and the
probability of having an edge between node i and j is not the same for every pair (7, j) as in

the ER model, but depends on the classes of i and j. More formally, following the approach

13



of Snijders and Nowicki, 1997 [19] and 2001 [20], we consider n nodes and we define the set
of possible classes C = {1, ..., k} where k is the number of classes. We define the attribute
vector X = (X, ..., X,,), where for every i = 1, ...,n, X; = z; € C is the class of node i. We
call Y the adjacency matrix of the graph and there is an edge between i and j,i # j with
probability n(z;,7;) = 7u,,, Where 1 is the matrix of class-dependent edge probabilities.
Note that we do not allow self-loops, therefore we impose Y;; = 0,Vi = 1,...,n. Since we are

considering undirected graphs, n(c,d) = n(d,c),Vec,d € C. We thus have:

Definition 2.2.1 (Undirected Bernoulli Stochastic Block Model). An undirected Bernoulli
stochastic block model is a family of probability distributions for an undirected colored graph

G with vertex set V = {1,...,n} and color set C = {1, ..., k}, defined as follow:

e The parameters are the vector m = (my, ..., ) of class probabilities and the symmetric

matriz n of class-dependent edge probabilities

e The attribute vector consists of i.i.d. random variables Xy, ..., X, where Pr(X; = ¢) =

7., Ve € C
o Conditional on X, fori < j the edges Y;; are independent Bernoulli(n(X;, X;)), and

2.3 The general Stochastic Block Model

We now extend the Bernoulli stochastic block model described before using;:

e A symmetric set of observed pairs N C Ny = {(i,7) € {1,...,n}? | i # j} which allows

for missing data.

e The dyad (Y;;,Y};) will be our unit of analysis. We let a be the set of possible values of
any Y;;, while the set of possible values for (V;;,Y}:) is denoted A C o? and it is called

Alphabet of pairwise relations.

Note that with the Bernoulli SBM, we had N' = N, a = {0,1} and A = {(0,0), (1,1)} since
we imposed Y;; = Yj;. For instance a directed graph would be described by o = {0, 1} and
A ={(0,0),(0,1),(1,0),(1,1)} or a tournament by o = {0,1} and A = {(0,1),(1,0)}. For
a signed directed graph we would have o = {0,+, —} and A = {0, +, —}?. Notice that we

14



always maintain the assumption that self-loops are not possible.

For every pair (i,7) € N there is a pairwise relation a = (ay, a,) € A such that the relation
from 7 to j is a; and the relation from j to ¢ is a,. Since we are considering dyads and not
single relations, we can explicitly model the mutual dependence of a; with a,.

Indeed, we extend the notion of 7 as following: we denote Y;; = (Y;,Y};), and we let:

Pr(Y,; =a| X =) = n.(z;, xj) (i,j)eN aeA cdeC (2.1)

It follows from the definition that ), na(c,d) =1, Ve, d € C.
By symmetry of AV we have that if a € A then 7(a) € A, where 7 is the reflection operator

defined as 7(ay, a,) = (ay, a;). Therefore we must have

Na(c, d) = Nxeay(d, ). (2.2)

Since it will be useful in the inference part, we now partition the alphabet into two subsets:
e The set of symmetric relations 4y = {a € A| w(a) = a}
e The set of asymmetric relations A; = {a € A | w(a) # a}

For instance, for a directed graph, Ay, = {(0,0),(1,1)} and A; = {(0,1),(1,0)}. Now, the
set A, is redundant, since we have in the set both a and m(a). Therefore we partition A,
in two subsets Ao and A;; in a way that a € Ao implies 7(a) € A;y; (notice that there are

many ways to define A;q and A;1). We define

./4/ = Ao U AlO (23)

and we denote by r = |A|, ro = |Ao|, 1 = |Aw| = |Aul, so that |A'| = r, + r; and

r =71+ 2r].
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2.4 Bayesian inference

What we know and what we want to find

In general, given a graph and a known number of classes k, our goal will be to recover the
true attribute vector z* and the true parameters 7* and n*. We follow a fully Bayesian
approach, using a Gibbs sampler as a Bayesian estimator. A note on the notation used:
uppercase letters stands for random variables, lower case letters for their values. We define

the Bayesian setting:

e From the assumption Pr(X; = ¢) = 7w, Ve € C independently, we have that the joint
distribution of X is

Pr(X) =x1,.. X, =z, | m) =a"tm® (2.4)

where m, = Y, 1(z; = ¢) is the number of nodes with class c.

e We define the relation count e,(c,d) which counts the total number of relations a

between a node of class ¢ and one of class d:

ea(c,d) = (L+ I{c=d}l{ac A}) "' x > 1I{y;=a}l{x;=c}l{z; =d} (25)
(4,9)EN

note that the first term is used to divide by two in the case a is symmetric and z; = z;,
since we want to avoid double counting.
e By definition of the SBM, the distribution of Y given X, II and H is given by:

Pr(y | 2,m.m) = (H [T led) )(H H<na<c,c>>€a<cﬁc>> (2.6)

acA 1<c<d<k acA’ c=1

Just to mention, in the case of an undirected graph, the expression can be written in a

more compact form:

Pl"(y | T, T, 77) - H H (77(13@, Ij))yij(l — T](l’i, 13]'))17%7 (27)
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e We have that by Law of Total Probabilities and by independence of X on H

Pr(y, @ [ m,n) = Pr(y | z,m,n) Pr(z | m,n) = Pr(y [ @, m,n) Pr(z | 7)  (2.8)
therefore, from Eq. (2.4) and Eq. (2.6) the joint distribution of Y, X | II, H is given by

Pr(y,a | m,n) =n" -7

(H T (alc.a) )l ) (2.9)

acA 1<c<d<k

» (H e c»eaw)

ac A’ c=1

e We assume a known prior density function for II, H called fi g (7, 7). Then, inference

of the class membership is based on the so-called posterior predictive distribution:

Pr(z | y) = / Frtxiy (rom, | y)dmdy (2.10)

and inference on the parameters 7,7 is based on the so-called posterior distribution:

Sy (mn [ y) = ZfH,H,X\Y(WW:JC | y) (2.11)

e QOur aim is to obtain the conditional distribution

fomxy(mnz|y) (2.12)
from which we can recover both the posterior predictive distribution and the posterior

distribution. However, we are not able to compute it analytically, but we will construct

a Gibbs sampler in order to sample from it.
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Gibbs Sampling

Gibbs sampling is a MCMC algorithm introduced by Geman and Geman in 1984 [29], it
is a technique utilized to approximate the posterior distribution (or more generally, a joint
distribution) with any desired accuracy. This method sequentially draws each unknown
random variable or vector, conditioned on the values of all other random variables. As an
example, suppose we want to sample (21, ...2z,) € X = A} X ... x &, from a joint distribution
p(z1, ...2,) and that we know how to sample any z; from p(z; | z_;), where z_; means all z’s

except z;. Then Gibbs sampling consists of the following:

Algorithm 1 Gibbs sampler

1: Initialize 2 arbitrarily for i = 1,...,n

2: fort=1,2,... do

3 fori=1,...,n do

4: sample 2! from p(z! | 24, ..., 20, 21, ., 27
5 end for

6: end for

The Gibbs sampler defines a Markov chain (Z;);ew on & where at each step only one com-

ponent is updated.

Proposition 2.4.1 (Detailed Balance). (X;)ew satisfies detailed balance with respect to the
joint distribution p(z1, ..., z,).

Proof.

For simplicity consider the two-dimensional case. The extension is trivial. Suppose we are

i a time step where we have to sample zy, then:

p (yl; ZZ)

Zzi p (Zi7 22)

P (21, 22) Pr((21,22) = (y1,22)) = P (21,22) p (11 | 22) = P (21, 22)

o p (21, 22) _
=p (y17 22) 221 D (Zi, 22) =p (yla 22)p(21 | 22)

=D (Y1, 22) Pr((y1,22) = (21, 22)) -
When we have to sample zo the proof would be almost the same. [

Therefore, if the conditional distributions are such that the Markov chain is aperiodic and

irreducible (which is often the case), the Gibbs sampler converges to the joint distribution
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as t — oo.

Gibbs Sampler for the SBM

In our case, we want to be able to sample from fr g xy (7, 1,2 | y). To do so, we consider
(m,m) as a unique vector and we consider each x; as a distinct element. That is, to do
an analogy with the example of before, we would have (z1, ..., z,41) = ((m,n), 21, ..., Ty),
everything conditioned on y.

In order to apply the Gibbs algorithm, we need to be able to sample from:
a) fH,H|X,Y(77777 | z,y)
b) Pr(x; | m,n,x_;,y) foralli=1,...,n

For b) we have by definition of conditional probability

Pr(y,x | m,n)
Pr(y,x_; | m,n)

PI’(.TZ- ’ T, 1), L—is y) = (213)

As seen before, we know how to compute Pr(y,z | m,n) (Eq.(2.9)), and, we can compute

Pr(y,z_; | m,n) by:
Pr(y7x—i | 7T77]> = Z Pl‘(y, T_iy Xi = d | an) (214)

From Eq.(2.13), Eq.(2.9) and Eq.(2.14) one can obtain:

k
Pr(X; = | mm i y) = Qe [T T[] (nalk, )=t (2.15)

acAd=1

Where Q is a normalizing constant and where d,(7,d) is the number of nodes j such that

z; =d and y;; = a:

dalicd) = 3 Uy =a}t{e; = d} (216)

J:(4,5)EN
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Thus we can compute expression b).

For a) we need a specification of the prior distribution fi g (7w, 7). If the number of vertices
is large enough and the prior relatively flat, the choice of the prior does not have a large
influence on the results. It is often reasonable to assume prior independence between 7 and
n. In this analysis, we assume the prior for 7 to be a Dirichlet Diry(T,...,T") where T is a
hyper-parameter. The Dirichlet prior has a strong tendency to favour unequal classes when
T is small, leading to the risk that in early stages the parameters will be trapped in a region
where some of the class sizes are almost 0; for this reason, Snijders and Nowicki proposed to
use 17" = 100k, which seemed to work well in practice.

Because of the redundancy 2.2 of the n parameter, we need to take more care in defining the
prior for n. For ¢ < d, n(c,d) = (na(c,d)),c 4 is an unconstrained r-dimensional vector (and
the case ¢ > d can be obtained directly from the case ¢ < d), while for ¢ = d, this vector is
subject to the constraint 7a(c, ¢) = Nx(a)(c, ¢), Va € Ay which amounts to impose r; equality

relations between the elements of 7(c, c) = (7a(c,¢)),c4- One can define a new vector

W)= {9 REA (2.17)

2na(c,c)  (a € Ayp)

which is a (79471 )-dimensional vector without redundant elements, and use this in the Gibbs
sampler since there is a one-to-one map between 7(c, ¢) and 7% (¢, ¢).

For the choice of the prior, we still use a Dirichlet prior, which will be a r-dimensional
Dirichlet Dir,(1,...,1) for n(c,d),c < d and a (r¢ + r1)-dimensional Dirichlet Dir, 4., (1,...,1)
for n (¢, c).

Remark 2.4.1 (Dirichlet distribution). The Dirichlet distribution of order K > 2 with pa-
rameters i, ...,ax > 0, denoted Dirk(ay,...,ak), has a probability density function with

respect to Lebesgque measure on the Euclidean space RE~! given by
| K
a;—1
T1yee oy TR Qe o, Q) = —— ;" 2.18
Flonaian o) = o T (2.18)
where {:rz}fil belong to the standard K — 1 simplex. The normalizing constant is the multi-
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variate beta function, defined in terms of the gamma function as:

B(a):M a=(a,...,0K). (2.19)

r (Zfil O‘Z‘) 7

Thanks to Dirichlet priors, it is possible to use well-known results on the Bayesian analysis of
multinomially distributed data to derive the posterior distribution of (7, 7) used by the Gibbs
sampler. The result we will use is the Conjugate Prior Theorem for Dirichlet Distributions,

which in our case amounts to the following:

Proposition 2.4.2. If the prior distribution of m is Dirichlet with parameters (T,).cc and
the prior distribution of n(c,d) is Dirichlet with parameters E,(c,d), while m and the n(c, d)
are a priori independent, then the posterior distribution of (mw,n), given the complete data

(y,x), is given by independent Dirichlet distributions with parameters

(me+T¢) e form
(ealc,d) + Ea(c,d))pes  forn(c,d),1 <c<d<k (2.20)

(ea(c,c) + Ealc,0))uen  forn@(c,c),1<c<k

We can use this result to complete step a) of the Gibbs sampler, using as written before
T. = 100k, Ve and E,(c,d) = 1,Va € A,¢,d € C with ¢ < d. To summarize, this is the final

Gibbs Sampler we will use:

Algorithm 2 Gibbs sampler for SBM
1: Initialize z? arbitrarily for i = 1,...;n
2: fort=1,...,t,4. do
3: Sample 7 = (71, ..., m) from Dirg(my + T, ...,my + T).

4 Sample 7(c,d), Ve, d : ¢ < d from the r-dimensional Dir,((1 + ea(c, d)),c4)

5 Sample ¥ (c, ¢), Ve from the (rg + r1)-dimensional Diryo., (14 €a(c, €))ac 4)
6 fori:=1,...,n do

7: sample ! from Pr(z! | m,n, 2!, .. 2l 2l ], . 2t y)

8 end for

9: end for
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2.5 Simulations

We can proceed with the simulation of the Gibbs sampler to analyze its performance on
synthetic data. The implementation of the SBM can be found in SBM_ext.py. Firstly I have
created a class called StochasticBlockModel_General which generates random graphs with
the distribution of the general SBM, given n, N, k,m, an alphabet of relations A and the n
matrix. Thereafter, the class Gibbs_sampler_General is used to perform the Gibbs sampling.
It is initialized with the adjacency matrix Y, the set of observed relations N, k and A.
Nowicki and Snijders proposed a method to improve convergence based on assigning initially
T = 10n and then decreasing it linearly to 7" = 100k in M, iterations; in the meanwhile,
one has to multiply the parameters of the Dirichlet ea(c,d) + Ea(c,d) by a factor w which
starts from % and it is increased linearly to 1, provided that the resulting product is greater
or equal than 1 (otherwise set it to 1). After the first My iterations, the algorithm continues
with other Mj iterations with 7" = 100k. After that, it should start to check for convergence
and stop when convergence is reached. It is possible to run the Gibbs sampler using the func-
tion sample_improved (M), where the method used to improve convergence is implemented,
but after the 2M iterations the function simply stops and returns the current configuration.
It is also possible to run the Gibbs sampler without the improvement, using the function
sample (tmaz)-

We can do some simple checks, and it is easy to see that the model works both in the case
of high connectivity within the cluster and low connectivity between clusters, or vice versa:
this is indeed what was anticipated in the introduction.

As a metric to understand the performance of the inference, I used the normalized mutual
information (NMI), which is a value between 0 and 1, the higher the better, and tells us how
much information we gain of the true classes given the knowledge of the predicted ones. The
relationship between the NMI and the number of errors depends on the number of classes
and on their prior probability. For instance, if n = 100, £ = 2 and the two classes are
equally probable, having 2 misclassified nodes out of 100 produces an NMI of around 0.86,
while the same with & = 3 would produce an NMI of around 0.92 (thus higher as k increases).
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https://github.com/LUKPROtm/Stochastic-Block-Model-for-community-detection-in-graphs/blob/main/SBM_ext.py

Undirected graphs

The first analysis goes as follows: let n = 100, k € {2,3,4}, 7. = %VC € C. We consider undi-
rected graphs, and we set 7(1,1)(c, ¢) = A and n(1,1)(c,d) = 1 — A, so that there is an edge with
probability A within classes and 1 — A between classes. Then we study how the NMI depends
on A. The results are shown in Figure 2.1a. Each data point is obtained from the average
NMI of 7 different simulations (with different graphs). The total number of iterations for
each simulation is set to 600, that is, My = 300, even though Nowicki and Snijders considered
values much larger (M, = 5000); therefore what I did is to check for fast convergence, even
though with an increased number of iterations the performances could slightly improve.
As expected, the average NMI is around 1 for high values of A, while it is 0 for A = 0.5,
since it is the case of no structure in the model. In all the cases k = 2, 3,4 the model is able
to recover quite well the underlying structure until A = 0.7. With A = 0.6 only in the case
= 2 it manages to maintain good performance. For symmetric reasons, the results would

be exactly symmetric in the case A € [0,0.5].

SBM, undirected graphs. Probas: A/ 1 - A. n = 100, MO = 300

1.0 1 Number of clusters
e k=2
k=3
k=4

SBM. Undirected graphs. Probability edge between classes = 0.03. n = 100, MO = 300

1.0 1 Number of clusters

L]
0.8 .

Average NMI

14 o

S o
Average NMI

0.2 4

0.0 4

0.5 0.6 0.7 0.8 0.9 10 0.03 0.06 0.09 0.12 0.15 0.18 0.21
A v

(a) Simulation 1: A / 1 — X probabilities (b) Simulation 2: Low expected degree

Figure 2.1: Results of simulations on undirected graphs

In this previous simulation we were considering highly connected graphs, however, real net-
works are often sparse. If we set the probability of edges between different classes fixed to
0.03, what is the probability v of having an edge within classes needed to recover the block
structure? The results are shown in Figure 2.1b. Note that the expected degree of each

vertex is given by 0.03 % 50 + v * 49 = @. It is clear from the results that the lower ex-
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pected degree of each vertex diminishes the performance, or at least, makes the convergence
slower. For instance, in the case v = 0.12 (expected degree = 7.5) the probability of having
an edge within classes is 4 times higher than the one between classes, however, the NMI is
much lower than the corresponding case A = 0.8 in the example before. Increasing £ in this
case diminishes the performances, indeed with this model as k increases the expected degree

decreases, making the convergence slower.

Undirected graphs

To verify the performance of the SBM with undirected graphs, I tried a model with n =
70,k = 3 and 7 given by :

n= )\nplanted + (1 o )\)nrandom (221)

random gy pplanted - prandom penresents a model such

that is, we interpolate linearly between 7
that there is a directed edge from node i to node j with probability p, independently on the
classes of i and j', while nP'2d yepresents a sort of "rock, paper, scissor” model. It is such
that the probability of having a directed edge from nodes of class 2 to 1, from 1 to 0 and
from 0 to 2 is 2p,, the probability of one within the same class is p, as before, and 0 else.

Increasing A is as if we shifted the probability of connecting from the class with which we

“lose” to the one with which we “win”. See Figure 2.2 for an illustration.

I used p, = 0.15, so that the expected in and out degrees of each node are around 10, with
the same hyper-parameters as before. The results of the simulations are shown in figure 2.3
The average NMI is around 0 for A < 0.2, and it grows linearly until A = 0.7, when it reaches
1, and remains 1 for A € [0.7,1].

Note that it is possible to have at the same time an edge from i to j and one in the opposite direction.
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Figure 2.3: Rock, Paper, Scissors model
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Chapter 3
MFM Stochastic block model

Models shown before assumed the knowledge of the true number of classes; in the case it is
not given, one can estimate it a priori using some selection criteria, and after that apply the
algorithm described before (or different ones). However, disregarding the uncertainty in the
initial phase may result in inaccurate clustering, especially when the community structure is
vague. Geng et al. (2019) [28] proposed to apply the methods for Mixture of finite models
(MFMs) described by Miller and Harrison (2015) [30] which are based on the ones used for
the Dirichlet process mixture (DPMs), in order to build a model that does not assume any
known number of classes.

In this chapter we first introduce mixture models, afterwards we study the MFM Stochastic
Block Model and we use the results from mixture models to build an inference algorithm for

the MFM-SBM and lastly, we simulate the algorithm.

3.1 Mixture models

A mixture model is a statistical model that represents the probability distribution of data
points as a combination of multiple probability distributions. Mixture models are often used
in situations where the data is believed to arise from multiple underlying components and
the goals are to estimate the parameters of these components and to assign each data point
to the most likely component. They are widely used in clustering, density estimation, and
model-based classification tasks. A common issue with finite mixtures (when the number of
components is finite, call it k), is that it could be difficult to find the correct k. The most
natural approach is called Mixture of finite mixtures (MFM): in a full Bayesian perspective,
one treats k like any other unknown parameter and considers a prior on it. Several algorithms

have been proposed for MFM, the most commonly used are based on reversible jump Markov
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chain Monte Carlo. Even though reversible jump is a general technique, it is often complicated
to use since it requires to design of good reversible jump moves, which can be nontrivial.
At the same time, infinite mixture models, such as Dirichlet Process Mixture (DPM), became
popular and well-studied thanks to the fact that there is a general Markov chain Monte Carlo
algorithm which is simple to implement and to adapt for specific cases. Miller and Harrison
(2015) [30] found a way to rewrite the MFM model through various representations used for
DPMs, letting one use the known methods of DPMs for MFMs.

First, we define the Mixture of finite mixtures (MFM) model rigorously:

Definition 3.1.1. The MFM model is defined by the following hierarchical process:

1. Sample the number of components (classes):

K ~ pg, where pg is the prior p.m.f. on {1,2,...}

2. Sample the prior probability distribution over components:

T = (71, .., ) ~ Dirg(7,...,7) given K = k, where v is a parameter of the model

3. Sample the component for each data point:

iid .
Xi,..., X, ~ 7 qgiven T

4. Sample the parameters of each component:

01, ...,0K Y giwven K, where H is a prior on the parameter space ©

5. Sample the data you observe:

Y; ~ fox, independently fori=1,...n given 0, X

Therefore the parameters of the model are the prior distribution on the number of components
Pk, the parameter for the Dirichlet distribution 7, the parameter space ©, the prior on © H
and a parametric distribution f defined on the space of the space of the observed data.

Dirichlet mixture processes, since they are infinite mixture models, don’t assume the existence
of a finite number of components k: they assume instead that the number of components
is infinite. We first write a representation of a DPM, called Chinese Restaurant Process
(CRP), also called Blackwell-MacQueen urn process, which is probably easier to understand
and also useful for our purposes, and afterwards we discuss for comparison with MFM the

formal definition of DPM.
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A CRP is described through the Chinese restaurant metaphor: suppose we are in a Chinese
restaurant with infinite tables, where each table represents a cluster, labelled 1,2, 3, ...; the
first customer is seated at the first table, that is x1 = 1 and every time a new customer 1

arrives, he seats at the table ¢ with probability

le|, at an existing table labeled ¢
P(x;=c|zy,...,xi_1) x (3.1)

«, if ¢ is a new table.

where |c| is the number of costumers at the table c.

The same probability distribution for {X;},—1 _, can be obtained also by defining a discrete
time stochastic process (C;);=1,..», Where at each time ¢ the value of the process is a partition
C; of the set {1,2,...,i}. The process is determined as follows (assuming « = 1 for simplicity):
at time ¢ = 1 we set C; = {1}; then, at time ¢ + 1, we either add the element i + 1 to one
of the blocks ¢ of the partition C; with probability l'% for each block, where |c| is the size of

the block, or we add the singleton {i + 1} to the partition C;.

For comparison, we write the definition of the Dirichlet Process Mixture

Definition 3.1.2 (Dirichlet Process Mixture). The DPM model is defined by the following

hierarchical process:

1. Sample the parameters for w:

Bi, Bo, ... i Beta(1, a)

2. Sample the component for each data point:

X1, X X1 given m = (m1, 7, ...) with w. = B. 152, (1 — By)

3. Sample the parameters of each component:

01,0, ... i H, where H 1is a prior on the parameter space ©

4. Sample the data you observe:
Y, ~ f@xi independently fori=1,...,n given O1.00, X1.n

By, By, ... are needed to construct 7, the prior probability distribution over the classes. One
can think of the intuition behind the Bjs in a way similar to the geometric distribution: in

order to be in class d you have to "fail” to be in class 1,...,s — 1 and then "succeed” to be
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in d, where Ve = 1,2, ..., B, is the probability of being in class ¢ given that you are not in
classes 1,...,c — 1.

A possible approach for our original problem, that is stochastic block model with an unknown
number of components, or also for a more general clustering problem with an unknown
number of clusters, would be to model the underlying process as a DPM and then make
inference based on it. This is a possibility and from some point of view it looks very similar
to an MFM model, however, there are two principal differences: firstly, the prior on the final
number of clusters ¢ is very different (here we use the following notation: clusters are the
groups that we find, components the ones that the model has, which are infinite for a DPM);
in an MFM one has complete control over the prior on the number of components k£ and as
the sample size n increases, t converges to k£ almost surely. Instead, in a DPM, the prior on
t has a particular parametric form and diverges with a logn rate as n goes to co . Secondly,
given the number of clusters t, the prior on the size of each cluster differs a lot between MFM
and DPM; in MFM most of the prior mass is on partitions with cluster sizes of the same
order of magnitude; in contrast, for DPM it is on partitions where cluster’s sizes vary widely,
having a few large clusters and many very small ones.

As a result, DPM tends to overestimate the number of clusters, creating new clusters with
few elements. For this reason, MFM is preferable. Miller and Harrison proved that it is
possible to write a Mixture of finite mixtures with a CRP representation (and also other
representations of a DPM) and thus to adapt a Gibbs sampler used for Dirichlet Processes
Mixtures to one for the MFM case.

The result is the following CRP representation of the MFM model:

1. Initialize with a single cluster consisting of element 1 alone:

G ={{1}}
2. For+=2,3,..., place element ¢ in

(a) an existing cluster ¢ € C;_; with probability o |c[+ v

(b) a new cluster with probability o —%S(J;)l)’Y

where t = |C;_4|.
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and where the coefficient of partition distribution V;(t) is defined as

—+00

V() = 3 o nlh) 32)

where k() = k(k—1)...(k—t+1), and (vk)? = vk(vk+1)...(vk+i—1). (By convention,
z© =1 and Ty = 1). With respect to the classical CRP, it is as if we were decreasing
the rate of creation of new clusters/tables by a factor V; (|C;_1| + 1) /V; (|Ci—1]), avoiding the
creation of too many new clusters/tables.

Given a partition C, for ¢ € C we denote y. = (y; : ¢ € ¢) and the marginal likelihood
m (ye) = Jo [[Tice fo (vi)] H(dB), with the convention that m (yg) = 1, thus having:

Py | C) = [ m(ve) (3.3)

ceC

When H is a conjugate prior for fy, such that the marginal likelihood m (y.) can be easily
computed, the following Gibbs sampling algorithm can be used to sample from the posterior

distribution on partitions p (C | 1., ):

Algorithm 3 Gibbs sampler for a MFM in CRP representation
1: Initialize C = {[n]} > i.e., one cluster.
2: for =1, ..., T do
3: for:=1,...,ndo

4: Remove element ¢ from C and place it...

5: in ¢ € C_; with probability o (|c| + ) (ZZCU;)

6: in a new cluster with probability o an(t(+)1) (v:)
7

8: end for

9: end for

Where C_; is the partition obtained by removing i and where ¢t = |C_;|. This algorithm is a
direct adaptation of a known algorithm for DPMs (Maceachern, 1994 [31]).

3.2 MFM Stochastic block model

We now consider the case of undirected graphs (which is exactly the case of the Bernoulli

SBM). We Consider the usual notation defined before. Then we define our model as :
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Definition 3.2.1 (MFM Stochastic Block Model, Bernoulli).

K ~ pg, where p; is a pm.fon {1,2,...}
Ned = Mde i Beta(a,b), for c,d=1,..., K,
7w | K ~ Dirg(v,...,7),
X;|m, K ~mfori=1,.

o

Yy =Y | X,n, K % Bernoulli (6), 05 = Neway, 1< <j<n.

That is, we define a prior py for the number of classes K and then given the value of K =k,
we assume that for each pair of classes (¢, d), . = 14 come from a Beta(a, b) prior (which is
actually the special case of the Dirichlet when considering only two possible relations), with
a,b hyper-parameters. 7, the probability distribution over classes, comes from a Dirichlet
prior with parameter « (that in the standard SBM was called T'), and finally for each pair
of nodes (7, ), i # j Yi; = Yj; are given by a Bernoulli prior, with parameter 0;; = nx,x,
as usual. This is exactly the same model as the undirected Bernoulli SBM, except that now
K is not fixed but it is a parameter of the model. A default choice of p; is a Poisson(1)
distribution truncated to be positive, which is assumed through the rest of the chapter.

When we do a posteriori blockmodelling, we want to infer the unknown parameters k,n, z
given what we know: Y (in this case we don’t infer w). To do so we would like to apply
the algorithm 3 described above to our specific model. However, the MFM Stochastic Block
Model is actually different from a Bayesian Mixture Model, indeed if we consider the observed
data Y; to be the i-th row of the adjacency matrix Y, then in a Bayesian Mixture Model Y;
would depend only on X;, but this is not true in the MFM-SBM since it depends also on
the classes of the other nodes. Geng et al., using the same approach of Miller et al., adapted
Algorithm 3 to the specific case of the MFM-SBM. In particular, we are in the case where H
is a conjugate prior for fy and therefore it is easy to obtain the marginal likelihood m. The

final algorithm is the following:
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Algorithm 4 Collapsed sampler for MEFM-SBM

Initialize  and 7.
for 7 =1, ..., T do
Update n conditional on x as
Nea ~ Beta (Yieq) + a,7ca — Yieq + ) c,de{l,.. .k}, c<d
fori=1,...,ndo
Update z; from Pr(x; =c|x_;,Y,n)
[lc| + 7] [H#i ed (1- nczj)(l_y”)] at an existing table ¢
”y%m (Y:) if ¢ is a new table
end for
end for

Where k is the number of clusters formed by the current =z,

Via = Y, Yy, (3.4)
(4,9):wi=c,xj=d,i#j
rqq 18 defined as:
ra= Y 1(xi=ca;=d e,de{l,. k} (3.5)
(4,5):5#£]
and
m () =[] [B(a,b)]1B< > Yytald— ) Y;j—i—b>. (3.6)

deC_; Jed,jF#i Jed,j#i

In this last equation B(a,b) is the two-dimensional Beta function defined in remark 2.4.1.

3.3 Simulations

Implementation of the MFM-SBM model can be found in MFM_SBM.py. I used the same
generative SBM as before, in particular in the case of undirected graphs. The class Col-
lapsed_Gibbs_Sampler implements the Collapsed Gibbs sampler used for the MFM-SBM. In
order to initialize the Gibbs sampler, only the adjacency matrix Y is required; moreover, one

can also choose to change the hyper-parameters, which are v, a, b described before and k;,;;,
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which is the number of classes to start with !. In this analysis I used y = 1,a = 1,b = 1 and
kinie = 10. The function sample(tne.) is used to run t,,,, iterations of the Gibbs sampler.
Figure 3.1a shows the NMI of the MFM-SBM in recovering the structure of a network with
k =3 (blue) and k = 4 (red) and probability of edges A within the same class and 1 — A be-
tween different classes. It seems that a phase transition occurs, with a critical point between
0.6 and 0.62

Instead, figures 3.1b and 3.2 show the performances of the MFM-SBM for a fixed A but vary-
ing the number of true classes. The number of iterations is set to 600 in the first simulation

and to 1200 in the second, since for larger ks more iterations are required.

MFM-SBM. Proba A/1—A. n = 100, t max = 600 MFM-SBM, Average NMI as a function of the true k. n = 100, t max = 1200
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Figure 3.1: NMI of the simulations
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Figure 3.2: Simulation 2: Predicted number of classes.

lindeed we are not required to start only with one class.
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Chapter 4

Degree-corrected stochastic block
model

4.1 Introduction

From the definition of the (generative) stochastic block model we have used until, in the
case of undirected graphs, every node within a given class has the same degree distribution
and this distribution is a Poisson binomial distribution, indeed the degree K of a node 17
of class ¢ is given by the sum K; + ... + K}, where £ is the number of classes and each
K4 represents the number of edges between the node ¢ and nodes of class d, which is given
by a Binomial distribution with parameter the number of nodes in ¢ ( minus 1 if ¢ = d)
and the probability that a node of class ¢ has an edge with one of class d (which is 7.).
This distribution is similar in spirit as the Binomial (and the Poisson) distribution, in the
sense that they are peaked around the mean and they do not allow high degree variability.
As a result, the stochastic block model does not account for degree heterogeneity. This is
particular problematic when we actually have a degree variability within classes: with the
stochastic block models considered before we would end up dividing, for instance, between
high-degree and low-degree nodes, and not between classes. As we have seen in Chapter 1,
most real networks follow a power law, or similar, degree distribution, and thus have high
variability of degrees. For this reason, the standard stochastic block model works poorly
on real data. In this section we are going to solve this problem, following the approach
of Karrer and Newman (2011) [26] and developing the so-called Degree-corrected stochastic
block model. Note that, the MFM extension described in the past chapter, can be applied,
with some minor changes, to the degree-corrected SBM (which was indeed proposed before).

Karrer and Newman used another approach to do a posteriori blockmodelling, which is based
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on Maximum likelihood estimation and a greedy algorithm (and not on Bayesian statistics

and Gibbs sampling), therefore we will follow a different approach to what followed so far.

4.2 A new definition for the standard Stochastic Block
Model

In order to simplify calculations, we change the definition of the stochastic block model: we
now allow for multi-edges, that is, more than one edge connecting two nodes, and self-edges,
that is edges with endpoints on the same node. Even though many real-world applications
do not allow for such edges, allowing multi-edges and self-edges is something often done for
random graph models for sparse networks since the difference vanishes as the size of the
network n becomes large.

Now, since we are allowing multiple edges, instead of considering the probability of an edge
between two nodes of classes ¢, d respectively, we consider the expected number of edges,
called 1. 4. The actual number of edges between i and j will be given (independently) by a
Poisson distribution with mean ). 4. Notice that, in the limit of n large for sparse graphs,
there is no difference between this model and the canonical one, since the expected number
of edges becomes equal to the probability of an edge.

Let G be a realization of the model; we denote as usual by Y the adjacency matrix of G,
where Y;; is equal to the number of edges between node 7 and node j if i # j and twice that
number if i = j. We let w. 4 be equal to 9.4 if ¢ # d and equal to 21,4 if ¢ = d, which is the
expected value of Y;; with X; = ¢ and X; = d. Thus, the probability of a graph G (which is
equivalent to the probability of Y') given Q, X is given by:

)Yzz/2

Y;
Pr(G |w,z) = H % exp (—Waya,) ¥ H G ;?2 exp (—%wwx) (4.1)
iJ X

(4,5):i<3

Which can be rewritten as

1 a2 1
PGl wn) = e < Ll e CECONE

cd
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where n, is the number of vertices in class ¢ and
Meqg = ZY;j]l(xi =c)1(z; =d)
ij

Following a maximum likelihood approach, we want to maximize Eq.(4.2) with respect to w
and x, which is equivalent to maximize its logarithm, the log-likelihood, which is given by,

neglecting terms that do not depend on w or z:

logPr(G | w,x) = Z (Meglog weqg — NeNgWeq) (4.3)

cd

By first order conditions, we get that the optimal w is given by

~ Med
= 4.4
Wed NNy ( )
Now, with the optimal w, the log-likelihood (4.3) becomes
logPr(G | w,x) = Z Mea10g (Meg/Neng) — 2m (4.5)

cd

where m is the total number of edges in the network, thus a constant that we can neglect,

obtaining

L(G]|z)= chd log Med (4.6)
cd

NeNg

which we will call the unnormalized log-likelihood for the group assignment x. This is the
final objective we want to maximize. The larger the objective for a given assignment x, the
more probable z is: the one that maximizes Eq.(4.6) will be the most likely one, what we
want to find. Eq.(4.6) has an information-theoretic interpretation: by adding and dividing

by constant factors (m,n,2) we can rewrite it as

LG o) =3 T log Med/2m (4.7)

2m neng/n?
cd ¢ d/
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Suppose now to pick randomly an edge from the graph. Let A be the random variable
representing the class of one of the two endpoints (taken at random) and B the one related
to the class of the other endpoint. Then, pk(c,d) = Pr(A = ¢, B = d) = mq/2m. At the
same time, if we were placing edges at random without taking care of the classes, as if we
were considering a multigraph version of the Erdés-Rényi random graph, we would (a priori,
before sampling the actual graph) get pi(c,d) = Pr(A = ¢, B = d) = n.ng/n*m Therefore
we can rewrite Eq.(4.7) as
c,d

@10 = Sl log PO (4.9
which is the Kullback-Leibler between pg(c, d) and p;(c,d). What we have obtained is the
following: for the standard Stochastic block model, the most likely assignment x is the one
that maximizes KL(pxk || p1), which can be thought as, loosely speaking, the assignment
that maximizes the surprise compared to the so-called null model, which in this case is the
Erdés—Rényi random graph. However, using the Erdos—Rényi random graph as a null model
is problematic for real networks, because it produces Poisson-distributed networks, which are

very unrealistic, as discussed in Chapter 1.

4.3 Degree-corrected SBM

Our aim is to incorporate the degree heterogeneity of nodes in our model. To do so, we define

the degree-corrected stochastic block model as follows:

Definition 4.3.1 (Degree-corrected SBM). Consider the standard Stochastic block model
defined before. The degree-corrected stochastic block model with parameters 6 = (04, ...,0,) is
defined in the exact same way, except that for any pair of nodes i,7, with i < j, Y;; is now
given by a Poisson(6;0;wx,x;). In particular, the parameter of the Poisson does not depend

only on the classes of i and j, but also on i and j.
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With this definition the probability of a graph G given ©, X and 2 becomes:

(eleijlxj)yzj l 22 xzxz)Y”/Q 1
Pr(G | 0,w,z) = H Texp —0i0;wWe ;2 XH 2 P exp (—503@”)

(4,9):4<]
(4.9)
Since the # parameters are arbitrary up to a multiplicative constant for each class, that would
be absorbed into w, we can impose for every class c: Zml:c 0; = 1. With this constraint we

can simplify Eq.(4.9) and, with a similar argument as before and ignoring constant terms,

one gets that the loglikelihood is given by:
logPr(G | 0, w,z) =2 Z k;log0; + Z (M 10g Weq — Wea) (4.10)
7 cd

hence obtaining that it is maximized for

ei = y  Wed = Med (411>
K,

where k; is the degree of node i and k., which is called stub, is defined as the sum of the

degree of vertices in class c¢. That is,

chdi Z k;. (4.12)

iiri=c

Let us denote with (.) the average value over an ensemble of graphs with the same parameters.
A remarkable property of this model is that it preserves both the expected number of edges

between classes ¢ and d :

Z (Yi;) = mea c,deC (4.13)

(4,9):wi=c,xj=d

and the expected degree of each node i:

> (V) = ki i=1,..,n (4.14)
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In contrast, the standard SBM preserves only the expected number of edges between classes,
since the average of the degree of each node will be the same among a class.

Back to the loglikelihood, substituting the optimal # and w it one can obtain:

L(G]|z)= chd log ;ngd (4.15)

Note that the only difference between this degree-corrected log-likelihood and the standard
one, is that, instead of having the term n.ng; one has k.k4, that is, instead of having the
number of members of each class, one has the stubs of those classes.

We can proceed in the same way as before with the information-theoretic interpretation: up

to constant terms and multiplications by constants, we can rewrite the log-likelihood as

Mea/2m

LG |2)=Y ?ﬂj 108 e} (ra 2] (4.16)

cd

Now, consider a model in which we fix the expected degree of each node to be the degree of

that node in the observed graph. Then, the joint p.m.f. of A, B (defined above) becomes

fie fid (4.17)

2m 2m’

pdegree(c, d) = PI'(A =c, B = d) =

Consequently, Eq.(4.16) can be written as KL(px || Paegree)- As a result, loosely speaking,
the most likely assignment x is the one that maximizes the surprise with respect to the null

model used for pgegree, Which is a model that incorporates the degree of each vertex.

4.4 The greedy algorithm

A useful property of the log-likelihood is that it is easy to compute its change when we modify
the assignment of a single node ¢ from class ¢ to any class d. Let’s define a(z) = 2zlog(z)
and b(z) = zlog(z), with the convention a(0) = b(0) = 0. Then it is not difficult to check

that we can write the change in the log-likelihood given by changing the class of i from (c,
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d) to d as:

AL = Z [a(me — ki) — a(me) + a(ma + ki) — a(ma)]
t#c,d
+ a(Meg + kic — kia) — a(meg)  + b (Mee — 2 (kie + 1)) — b (Mee) (4.18)

+b(mgg + 2 (kig + i) — b (maa) — a (ke — ki) + a(ke) — a (kg + ki) + a (kq)

where:
e k;; is the number of edges from vertex i to vertices in class ¢t excluding self-edges;
e u; is the number of self-edges of vertex 1.

This computation can be done in O(K + (k)) and thus finding the d that maximizes the
change can be done in O(K (K + (k))). Since those computations can be done quickly, it’s
possible to implement local vertex switching algorithms, such as Monte Carlo methods like
the Metropolis-Hastings algorithm. However, those are slow to converge in general, and
Karrer and Newman proposed instead a greedy algorithm which gives better results.

The algorithm goes as follows:
e initialize at random =z
e Repeat until there is no increase in the objective function:

— let the set of available nodes be the set of all nodes
— repeat until you move every node:

x select among all the available nodes and all possible classes d the move @ < d
(node 7 becomes of class d) that gives the largest increase in the objective (or
least decrease, since it is not allowed to remain in the same class), obtained
from Eq.(4.18) and apply it

x remove the node i previously selected from the set of available nodes

— Among all the configurations of x scanned throughout the inner loop, select the
one with the highest log-likelihood, obtained from Eq.(4.15) and let  be equal to

that one (that is, start the new loop with this configuration)
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Algorithm 5 Greedy algorithm for degree corrected SBM

1: initialize at random x
2: repeat
3: Available nodes = {1,...,n}
4 while Available_ nodes is non-empty do
5 apply the move ¢ < d that leads to the largest AL, with ¢ € Available nodes,
remove ¢ from Available_nodes
end while
Let the new configuration x be the one with the highest objective among all the ones
scanned throughout the inner loop
9: until there is no increase in the objective function
10: return x of the last but one iteration (the one with the largest objective)

Y

Which can be summarized as follows:

The idea is that, at every iteration, we move every vertex at most exactly once, and among
all the configurations scanned, we select the one with the highest score.

We note that the authors suggested running more simulations with different random seeds
and taking the assignment z which gives the best score. This is a common fact/issue in

deterministic algorithms which depend on a stochastic initial condition.

4.5 Simulations

Implementation of the Degree Corrected SBM can be found in DC_SBM.py. The class
GreedyAlgorithm can be used to run the greedy algorithm on an adjacency matrix Y given
a known number of classes k. To run the algorithm it is sufficient to use the function in-
fer(n_samples), where n_samples is the number of simulations to run (the best configuration
is kept). The classes Multigraph_.SBM_noDC' and Multigraph-SBM_DC' can be used to gener-
ate non-degree corrected and degree corrected SBMs respectively, without constraints. The
classes Separated_groups, Core_Periphery, Hierarchical can be used to generate the models
described later.

We test the greedy algorithm on synthetic data. How to generate them? Given a number of
nodes n and a class assignment x (or equivalently a number of classes k with an associate
probability for each class), the parameters of the (generative) DC-SBM are 6 and w. Suppose
we want to fix the expected degree of each node, then we can generate a network with this

constraint by setting for ¢ = 1,..,n  6; from Eq.(4.11), where k; is in this case the expected
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degree of ¢ and the stub is given by Eq.(4.12). For the choice of w we have more freedom in-
stead, provided that equations (4.11) and (4.12) are respected, which is equivalent to impose
Ve € C, ) yeeWea = Ke. Following the approach of Karrer and Newman, we can let w be a

convex combination of two different structures, in this form:

w = )\wplanted + (1 - A)wrandom (419)

random

random 1opresents a fully random network, so that wr is the expected value of my4

where w

random

in a random graph preserving the degree sequence but without a block structure. w3 is

thus given by ™.
Instead, wP@ed js chosen to create the group structure. A possible example, which we call a

separated groups structure, is:

k1 0 0 0
0 kKo 0 O
wplanted — . 02 . (420)
K3
0 0 0 &y

With this choice of wP®d when A\ = 1 all edges are confined within communities, with no
connections between different communities. Conversely, when A = 0, edges are distributed
randomly, maintaining the degree sequence. More complicated choices of wPa**d are also
possible, as for instance a core-periphery structure (left) (with x; > kg) or a hierarchical

structure (right) (with A < Ky, k2)

K1 — A A 0
, wrianted — A k—A 0 (4.21)
0 0 K3

wplanted — ki — k2 k2

K9 0

We can thus study how the Degree Corrected stochastic block model is able to recover those
structures as A varies and eventually compare it with the Standard Stochastic Block model.

For instance, in figure 4.1 is displayed the average NMI as a function of A\ for a Separated

42



Groups model with n = 150, £ = 2 and expected degrees chosen randomly from 5,10, 12, 20.

The curve is similar to the ones obtained by Karrer and Newman. Instead of considering

Separated group model. k = 2, n = 150, degrees =[5, 10, 12, 20]
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Figure 4.1

multigraphs, as discussed so far, it is possible to impose the same conditions required in
Chapter 2 for binary graphs, setting to zero the diagonal elements of the adjacency matrix
and cutting at 1 the values in Y greater than 1. Since we are in the sparse regime the
correction is not relevant and with this new adjacency matrix, we can compare the results
of the Degree Corrected SBM with the SBM defined in Chapter 2. For instance, figure 4.2
shows the results of the inference on a Separated Group model with n = 100,k = 3, A = 0.8
and with a degree distribution following a power law with v = 2. As expected, we see that
the DC-SBM is able to find the true structure in such a network, while the standard SBM
cannot: indeed it divides nodes only according to their degree.

As a final analysis we can study the performances of the DC-SBM on the three models
described before as a function of A, and compare them to the ones of the standard SBM.
Results are shown in figure 4.3. For all of them n = 100, n_samples = 7 and My = 300.
In the case of the Separated groups model the expected degree of each node was chosen
randomly between 5 and 15 independently of the class, while in the Core Periphery model it
was chosen between 5 and 20 if the node was in the core group, from 5 and 10 if it was in the
periphery group. For the Hierarchical model, it was chosen from 5,10 and 20 independently
of the class, and moreover, A was set to 60. Generally, the DC-SBM performs much better
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than the standard SBM, however, the standard SBM is still able to reach relatively decent
results, probably because the degree variation is moderated, in contrast with the scale-free

network of figure 4.2.

(c) Prediction of standard SBM (NMI = 0.02)

Figure 4.2: Scale free network, comparison of results
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Separated group model. k = 2, n = 100, Degrees : [5, 15] Core - Periphery. k = 2, n = 100. Degrees: core -> [5,20], perif -> [5, 10]
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(c) Hierarchical model

Figure 4.3: Comparison of DC-SBM with the standard SBM in the three models described
above
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