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Abstract

This work aims to study and simulate in Python the Stochastic Block Model and some

of its extensions. Firstly, an introduction to random graph theory and Network science is

presented, with the purpose of having a preliminary overview of the field. Thereafter, the

Stochastic Block Model is analyzed, both as a random graph model and as a method of

doing community detection on graphs, and for this purpose, following a Bayesian approach,

a Gibbs sampler is constructed to make inference on graphs. In the last two chapters two of

the extensions of the Stochastic Block Model are studied, namely the MFM-Stochastic Block

Model, preceded by an introduction to Mixture of Finite Mixtures and on Dirichlet Mixture

Processes, and the Degree Corrected Stochastic Block Model. For the latter, differently from

the first two, a Maximum Likelihood approach is followed, and a greedy algorithm is con-

structed.

All the models were simulated in Python and their implementation can be found at

https://github.com/LUKPROtm/Stochastic-Block-Model-for-community-detection-in-graphs

https://github.com/LUKPROtm/Stochastic-Block-Model-for-community-detection-in-graphs
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Chapter 1

Random graph theory and Network
science

1.1 Introduction

The field of random graphs theory started with Pál Erdős (1913-1996) and Alfréd Rényi

(1921-1970) in 1959-1961, with a series of influential papers: On random graphs I (1959) [1],

On the evolution of random graphs (1960) [2], On the evolution of random graphs II (1961)

[3] and On the strength of connectedness of a random graph (1961) [4]. At the beginning

random graphs theory was used by Erdős and Rényi to prove deterministic properties of

graphs using the Probabilistic method: for instance, if it is possible to show that a random

graph has a certain property with positive probability, then it must exist a graph with that

property. However, it was clear already that the study of random graphs could be used to

model real-world networks, which is what we are interested in our work. In this chapter we

mention some basic concepts of random graphs theory and of network sciences, in order to

have an introduction to the topic and to be able to understand better the context of the

main subject of this work: the Stochastic block model for community detection on graphs.

1.2 Random Graphs theory

1.2.1 Definitions

A random graph is a graph-valued random variable; it can be either described simply by a

probability distribution over graphs or by a random process which generates the graph.

A random graph model is a family of probability distributions over graphs; examples of ran-

dom graph models are the Erdős–Rényi random graph models, which are the main subjects
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of this chapter and the various Stochastic Block models, which will be the main subjects of

the next chapters.

The Erdős–Rényi random graph models are the building blocks of the study of networks and

random graphs theory. There are two different Erdős–Rényi random graphs models: the

uniform random graph, denoted G(n,m), and the binomial random graph, denoted G(n, p).

Definition 1.2.1 (Erdős–Rényi random graph model: uniform random graph). Let Gn,m be

the family of all labelled undirected graphs with vertex set V = {1, 2, . . . , n} and exactly m

edges, 0 ≤ m ≤
(

n
2

)

. Then, the uniform random graph G(n,m) assigns the same probability

to every element of Gn,m. That is, ∀g ∈ Gn,m

Pr(g) =

(
(

n
2

)

m

)−1

(1.1)

Equivalently, we start with an empty graph on V , and insert m edges in such a way that all

possible
((n

2
)

m

)

choices are equally likely.

Definition 1.2.2 (Erdős–Rényi random graph model: binomial random graph). Let Gn be

the family of all labelled undirected graphs with vertex set V = {1, 2, . . . , n}. Fix 0 ≤ p ≤ 1.

Then the binomial random graph G(n, p) is constructed such that, for all
(

n
2

)

pairs of vertices

i, j ∈ V , there is an edge between i and j with probability p, independently from all the other

edges.

Equivalently, we assign to each graph g ∈ Gn the probability

Pr(g) = pm(1− p)(n

2
)−m (1.2)

where m is the number of edges of g.

Therefore, G(n,m) fixes the number of edges, while G(n, p) fixes the probability of each edge.

Through the rest of the work, we will use mainly the G(n, p) model and we will refer to it as

the Erdős–Rényi random graph model.
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1.2.2 Properties of the Erdős–Rényi random graph

We now briefly mention some properties of graph in generals and how they apply to Erdős–Rényi

random graphs.

Degree distribution

Definition 1.2.3 (Degree). Given a graph G = (V,E), the degree of the vertex i ∈ V ,

denoted ki, is the number of edges connecting i to other vertices. That is, the degree ki of a

vertex i is defined as

ki = #{j ∈ V : {i, j} ∈ E}. (1.3)

In case of a directed graph, one has to consider two different degrees, the incoming degree

kini and the outgoing degree kouti ; in this case the total degree ki is the sum of the two.

Definition 1.2.4 (Degree distribution). Given a graph G = (V,E), its degree distribution

p0, p1, ..., pmax is the distribution of the degrees of the vertices. In particular, if |V | = n ,

pk = nk

n
, where nk is the number of nodes with degree k.

That is, if we pick a vertex at random, it will be of degree k with probability pk. We denote

the average degree ⟨k⟩, which is by definition the expectation of the degree distribution.

It is clear from the definition that the degree distribution of an Erdős–Rényi random graph

G(n, p) is a Binomial(n− 1, p), and therefore its (expected) average degree is ⟨k⟩ = p(n− 1).

In the large n and small p limit, that is when considering sparse graphs since ⟨k⟩ ≪ n (which

will be the case for real networks), the degree distribution of an Erdős–Rényi random graph

is well-approximated by a Poisson distribution with parameter ⟨k⟩. This comes from the fact

that we can view the Poisson(λ) distribution as the limiting distribution of a Binomial(n, λ
n
)

as n goes to ∞. Therefore we say that the Erdős–Rényi random graphs follow a Poisson

distribution, that is, for k = 0, ..., n− 1

pk ≈
⟨k⟩k e−⟨k⟩

k!
. (1.4)
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Size of the largest component

A fundamental property of the G(n, p) model is that it undergoes a phase transition for the

size of the largest connected component. Indeed, fix an expected degree ⟨k⟩ and consider the

sequence of random graphs (G(n, pn))n∈N with pn = ⟨k⟩
n−1

so that the nodes of any random

graph in the sequence have an expected degree of ⟨k⟩. For a given n, let Ln be the size of

the largest connected component of G(n, pn). Then, as n goes to∞, depending on ⟨k⟩, there

could be different regimes (properties are with probability 1 as n goes to ∞):

1. Subcritical regime: ⟨k⟩ < 1. In this regime Ln = o(n), which means that all the

connected components have a negligible size with respect to n.

2. Critical regime: ⟨k⟩ = 1. Still Ln = o(n), even though in absolute terms there is a

jump in the size of Ln

3. Supercritical regime: ⟨k⟩ > 1. The largest component contains a finite fraction of

vertices, that is, Ln = cn with 0 < c ≤ 1. We call such a component a giant component.

4. Connected regime: ⟨k⟩ > log(n). The giant component absorbs all the vertices,

Ln = n, the graph is connected.

Small world property

As we shall see later, often real networks show the small world phenomenon. Loosely speaking

we say that a graph is a small world if the average distance between any two pair of vertices is

much smaller than the total number of nodes n. This phenomenon is also called ”six-degree

separation” from the famous Milgram’s experiment in 1967 [5], where he tried to estimate

the average distance between people (where edges are social relationships), obtaining that in

the sample studied on average people even living in very different places of the United States

had a distance of 6 relationships, which is extremely small with respect to what one may

think. More formally, we define

Definition 1.2.5 (Walk). Given G = (V,E), a walk on G is a sequence of alternating vertices

and edges that starts with a vertex and ends with a vertex such that consecutive vertices and

edges in the sequence are incident to each other
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Definition 1.2.6 (Path). A path is a walk in which no edge is traversed more than once.

We define the length of a walk as the number of edges in the walk. It is clear that, if G is

connected, then there exists a finite-length path connecting any pair of vertices i, j ∈ V .

Definition 1.2.7 (Geodesic distance). Given G = (V,E), for any pair of vertices i, j ∈ V ,

the geodesic distance of i and j is the length of the shortest path from i to j, that is, the

minimum number of edges that one has to travel to go from i to j

We denote by ℓ the mean geodesic distance in G. Since a priori G could be disconnected,

thus having some nodes with ∞ distance, in the mean we condition on the fact that the

geodesic distance is finite.

Definition 1.2.8 (Small World). Let (Gn)n≥1 be a sequence of random graphs, with Gn =

(Vn, En) and |Vn| = n. We say that (Gn)n≥1 is a small world if there exists a constant K <∞
such that

lim
n→∞

P (ℓn ≤ K log n) = 1. (1.5)

Furthermore, we say that (Gn)n≥1 is an ultra-small world if ∀ε > 0,

lim
n→∞

P (ℓn ≤ ε log n) = 1 (1.6)

Theorem 1.2.1 (Chung and Lu., 2002). If npn ≥ c > 1 for some constant c, then for the

G(n, pn) model ℓ is almost surely (1 + o(1))
(

logn
lognpn

)

provided logn
lognpn

→∞ as n→∞.

Which means that the sequence of ER random graphs (G(n, pn))n∈N defined before satisfies

the small world property if ⟨k⟩ > 1, obtaining ℓ ∼ logn
log ⟨k⟩

.1

The fact that, in the supercritical regime an ER random graph model is a small world as

n → ∞, that is the average geodesic distance is exponentially smaller than the number of

vertices is something non-trivial at all. Our notion of distance is based on our experience on

1In particular, Fronczak et Al. 2004 [6] found the analytical solution, which is

ℓ =
log n− γ

log⟨k⟩ +
1

2
(1.7)

where γ ≈ 0.57722 is the Euler constant.
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regular lattices, generally in 1D, 2D or 3D. For instance, in a regular d-dimensional lattice, l

scales as n
1

d . This means that in a regular d-dimensional lattice the average geodesic distance

between two vertices is much larger than the one in an ER random graph.

Clustering coefficient

Another important statistic of a graph is the clustering coefficient, which measures how much

the neighbors of a given vertex link with each other.

Definition 1.2.9 (Local clustering coefficient). Given a graph G = (V,E) the local clustering

coefficient of a vertex i ∈ V is defined as

Ci =
2Mi

ki(ki − 1)
(1.8)

where ki is the degree of vertex i and Mi is the number of edges between the ki neighbors of i.

Note that Ci is in [0, 1], since ki(ki−1)
2

is the number of combinations without repetition of

pairs of neighbours of vertex i. For a given vertex i, Ci is the probability that taking two

of its neighbors at random, there is an edge between them. The degree of clustering of a

graph is captured by the average clustering coefficient, denoted ⟨C⟩. The higher the average

clustering coefficient, the more neighbors connect with each other.

From the definition of the G(n, p) model, in particular from the independence assumption of

each edge, the expected local clustering coefficient of each vertex of an ER random graph is

Ci = p = ⟨k⟩
n−1

. Therefore for a fixed ⟨k⟩, Ci → 0 as n → ∞. Thus, in a sparse ER random

graph ⟨C⟩ ≈ 0.

1.3 Network science

Throughout this section, we will compare the ER random graph models with real networks

and we will consider different and more accurate models to describe the latter. A parenthesis

on the notation used: we will often use the words network, node and link to describe real

networks even though they have the same meaning of graph, vertex and edge.

Some examples of real networks studied in the literature are described in 1.1:
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Network Nodes Links Type n m ⟨k⟩
Internet Routers Internet con-

nections
Undirected 192,244 609,066 6.34

WWW Webpages Links Directed 325,729 1,497,134 4.60
Power Grid Power plants,

transformers
Cables Undirected 4,941 6,594 2.67

Mobile-Phone
Calls

Subscribers Calls Directed 36,595 91,826 2.51

Email Email ad-
dresses

Emails Directed 57,194 103,731 1.81

Science Col-
laboration

Scientists Co-
authorships

Undirected 23,133 93,437 8.08

Actor Network Actors Co-acting Undirected 702,388 29,397,908 83.71
Citation Net-
work

Papers Citations Directed 449,673 4,689,479 10.43

E. Coli
Metabolism

Metabolites Chemical re-
actions

Directed 1,039 5,802 5.58

Protein Inter-
actions

Proteins Binding inter-
actions

Undirected 2,018 2,930 2.90

Table 1.1: Examples of real networks. Taken from [7]

Most real networks satisfy the following properties: they are small worlds, in the sense that

ℓ ≤ O(log n), they have high clustering2 and they are scale-free3. Moreover, in the majority

of cases 1 < ⟨k⟩ < log n, meaning that, if they were described by an ER random graph, they

would be in the supercritical regime (but not in the connected one).

Clustering

As we have seen so far, in the supercritical regime the G(n, p) model satisfies the small world

property, however it does not have high clustering. Intuitively, for a network to have nodes

with high local clustering coefficient means that, if a node i has an edge with both nodes j and

k, then j and k are likely to be connected. It is quite natural to think that in real networks

this is the case: for instance, if I am a friend of both i and j, then it is more likely that i and

2Differently from what discussed so far, in network science the phrase ”small world” is often used not
only to indicate the property of having a low average distance between vertices, but it also requires the high
clustering property. However in this notation we will keep the two properties separated, calling only the first
one small world.

3Actually, the universality of scale-free networks is controversial, see Broido and Clauset, 2019 [8], however,
the discussion is still valid.
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j are friends. In contrast, the ER model in its complete randomness does not take it into

account. A notable extension of the Erdős–Rényi model which allows for high clustering is

the Watts-Strogarz Model (Watts and Strogarz, 1998 [9]). This model interpolates between

a ring lattice, which has high clustering but lacks the small world property, and an ER

random graph, which lacks clustering but is a small world. It goes as follows (see Figure 1.1

for an illustration): start with a ring of nodes and connect all the nodes with their nearest

neighbors and the second nearest ones. Then, rewire each edge with probability p (where p

is a parameter of the model) and connect that to a randomly chosen node. Note that with

p = 1 we go back to the ER random graph.

Figure 1.1: Illustration of the Watts-Strogarz Model. Image taken from [9].

Scale-Free property

The scale-free property is another important difference between the ER model and real

networks

Most real networks are sparse, i.e. ⟨k⟩ ≪ n, therefore as before we will consider the Poisson

distribution to be the degree distribution of the binomial random graph. However, most

real networks do not follow a Poisson distribution. The first evident difference between the

degree distribution of most of real networks and the Poisson distribution is that, in the

latter, outliers are missing. Indeed, in a Poisson distribution, the tail decreases faster than

exponentially. Using Stirling approximation

p(k) =
e−⟨k⟩ ⟨k⟩k

k!
≈ e−⟨k⟩

√
2πk

(

e ⟨k⟩
k

)k

(1.9)
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obtaining that for k > e ⟨k⟩, the term inside the parenthesis is smaller than one, and, as

k increases, p(k) decreases more than exponentially. If we take the WWW network as an

example (as studied by Albert et al., 1999 [10]), where each document (webpage) is a node

and there is a link between two documents if there is a ”link” from one to the other, it is

clear that the variation in degree of the nodes is enormous: most of the webpages have only

a few links, while there are pages, such as Google or Facebook, that have a degree with a

completely different order of magnitude. If the WWW was described by a ER random graph,

the existence of these so-called hubs (nodes with very high degrees), would not have been

possible. The presence of hubs is verified for a large part of real networks.

The degree distribution of the WWW network is better approximated with a power law dis-

tribution, that is, a distribution of the form pk ∼ k−γ. We call scale-free the networks which

follow a power law with 2 < γ < 3: the reason behind this name is related to the fact that,

for γ < 3, the variance of the degree distribution is not finite and therefore it is impossible

to define a scale within which the degrees of the nodes are, in contrast to Poisson networks,

where the standard deviation is ⟨k⟩1/2 and therefore nodes in the network have degree in the

“range” ⟨k⟩ ± ⟨k⟩1/2. Notice also that we are not interested in the case γ < 2, since in this

regime also ⟨k⟩ is not finite.

In order to check whether a network is scale-free, it is useful to give a look at the so-called

log-log plot, where log(k) and log(pk) are on the x and y axis respectively. Taking the log-

arithm from the definition of the power law, we have log(pk) = γlog(k) + constant, that

is, a scale-free network should be well-approximated by a line on the log-log plot, while the

parameter γ is the slope of that line. From this plot we can check that, for instance, the

WWW network is indeed a scale-free network.

Remark 1.3.1 (Ultra-small world property). Networks which follow a power law in the Scale-

free regime (2 < γ < 3) not only are small words, but they actually are ultra-small worlds

(Cohen et al. 2003 [11]), indeed in this case ℓ ∼ log log n. The presence of hubs is crucial in

reducing the average geodesic distance between nodes because they connect a large number of

small-degree nodes. This is a feature seen also in our life, as in the case of train stations (or

airports): in general we have many small train stations and a few very connected ones, the

hubs, and this structure dramatically reduces the average time needed to reach a destination.
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A network model that aims to explain the origin of the power law in real networks is the

Barabási-Albert model (Barabasi, Albert 1999 [12]). The two main mechanisms underlying

the model are: Growth and Preferential attachment. The first indicates that to obtain the

final network we start with a smaller one (even empty) and at every time step we add a new

node to it. The second implies that the newly added node will link more likely to nodes

with high degree: in particular, each new node will link to m existing nodes, and each link

connects to an existing node i with a probability proportional to ki.

The final degree distribution obtained by the BA model is a power law with γ = 3.

Remark 1.3.2 (Degree Distribution of Real Networks). Real networks very rarely follow a

pure power law, indeed there are two main recurring deviations: Low-degree saturation which

means that for k < ksat pk is flat making the network have fewer small degree nodes than

expected from a pure power law, and High-degree cutoff, which is a drop in pk as soon k > kcut,

leading to fewer high degree nodes with degree greater than kcut, and this can be due to inherent

limitations in the number of links a node can have.

11



Chapter 2

Stochastic Block Model

2.1 Introduction

We now turn our attention to the community detection task on graphs, that is, we want

to find a way of grouping the vertices of a graph according to some criterion. There are

two main classes of community detection methods for general data: model-based methods

and non-model-based methods. In model-based methods one assumes there is a true model

underlying the distribution of the data, while in non-model-based methods it is not assumed

any underlying model but instead one groups elements according to some similarity measure.

Among the model-based methods on graphs, the stochastic block model is the most used,

while for non-model-based methods spectral clustering is the most relevant on graphs, see for

instance von Luxburg, 2007 [13], even though another used option is hierarchical clustering,

see for instance Girvan, 2002 [14] or Newman, 2004 [15]. More recent studies tried also to

build clustering algorithms on graphs based on Graph Neural Networks, see Tsitsulin et al.,

2023 [16]. Since non-model-based methods try to group data points based on some similarity

measure, they would, in the graph scenario, group together nodes that are highly connected to

each other, while, for model-based methods, this is not always the case, indeed the stochastic

block model is able to recover structures with low intra-connectivity but sharing similar

patterns and therefore, for this reason, it can be used with the broader scope of discovering

the latent structure of the network.

2.1.1 Lineage of the Stochastic Block Model

The Stochastic Block Model was formalized by Holland et al. (1983 [17]) as a random

graph model, while Wang and Wong (1987 [18]) were the first to apply it to real data but
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assuming to know a priori the block structure, that is, the group membership. Snijders and

Nowicki (1997 [19]) and (2001 [20]) studied a posteriori blockmodeling, which is what we

are interested in: inference of the block structure, and they did it both in the case of the

number of communities k = 2 and k > 2. In its simplest case of binary graphs (graphs with

binary adjacency matrix), the model is referred to as Bernoulli SBM. Binary graphs have

been studied by numerous models, among all, a relevant extension of the SBM on binary

graphs is the mixed membership models, studied by Airoldi et al. (2008 [21]); Fu et al. (2009

[22]); Xing et al. (2010 [23]); Fan et al. (2013 [24]) and Li et al. (2015 [25]), which allows

each node to belong to multiple communities; while in practice, the most used extensions are

the Degree-corrected SBM of Karrer and Newmann (2011 [26]) and the Microcanonical SBM

in its nested version (Peixoto, 2017 [27]). Some extensions focused on modelling the number

of communities k, as the MFM-SBM of Geng et al. (2019 [28]), and in general, many more

extensions have been studied.

In our analysis, we will discuss in Chapter 2 the original model proposed by Snijders and

Nowicki, in particular in section 2.2 we introduce the basic model for undirected binary

graphs and in section 2.3 we extend it to more general graphs and relations. In Chapter 3

we focus on the MFM-SBM, which allows us to include in the model the fact that we don’t

know a priori the number of communities, while in Chapter 4 we study the Degree-Corrected

stochastic block model.

2.2 The Bernoulli Stochastic Block Model for undi-

rected graphs

In this section we introduce the simplest Stochastic block model, the one called Bernoulli

SBM for undirected graphs. In the next section we extend in its full generality and for this

reason, we omit the discussion of how to make inference on the first as it will be easy to

apply the general derivation to this specific case.

We have seen that in an Erdős–Rényi random graph, any pair of nodes has a probability of

being connected which is denoted p and it is the same for every possible pair. Intuitively

speaking, in the stochastic block model we assign a class at each node of the graph and the

probability of having an edge between node i and j is not the same for every pair (i, j) as in

the ER model, but depends on the classes of i and j. More formally, following the approach
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of Snijders and Nowicki, 1997 [19] and 2001 [20], we consider n nodes and we define the set

of possible classes C = {1, ..., k} where k is the number of classes. We define the attribute

vector X = (X1, ..., Xn), where for every i = 1, ..., n, Xi = xi ∈ C is the class of node i. We

call Y the adjacency matrix of the graph and there is an edge between i and j, i ̸= j with

probability η(xi, xj) = ηxi,xj
, where η is the matrix of class-dependent edge probabilities.

Note that we do not allow self-loops, therefore we impose Yii = 0, ∀i = 1, ..., n. Since we are

considering undirected graphs, η(c, d) = η(d, c), ∀c, d ∈ C. We thus have:

Definition 2.2.1 (Undirected Bernoulli Stochastic Block Model). An undirected Bernoulli

stochastic block model is a family of probability distributions for an undirected colored graph

G with vertex set V = {1, ..., n} and color set C = {1, ..., k}, defined as follow:

• The parameters are the vector π = (π1, ..., πk) of class probabilities and the symmetric

matrix η of class-dependent edge probabilities

• The attribute vector consists of i.i.d. random variables X1, ..., Xn where Pr(Xi = c) =

πc, ∀c ∈ C

• Conditional on X, for i < j the edges Yij are independent Bernoulli(η(Xi, Xj)), and

Yji = Yij

2.3 The general Stochastic Block Model

We now extend the Bernoulli stochastic block model described before using:

• A symmetric set of observed pairs N ⊆ N0 = {(i, j) ∈ {1, ..., n}2 | i ̸= j} which allows

for missing data.

• The dyad (Yij, Yji) will be our unit of analysis. We let α be the set of possible values of

any Yij, while the set of possible values for (Yij, Yji) is denoted A ⊆ α2 and it is called

Alphabet of pairwise relations.

Note that with the Bernoulli SBM, we had N = N0, α = {0, 1} and A = {(0, 0), (1, 1)} since

we imposed Yij = Yji. For instance a directed graph would be described by α = {0, 1} and

A = {(0, 0), (0, 1), (1, 0), (1, 1)} or a tournament by α = {0, 1} and A = {(0, 1), (1, 0)}. For

a signed directed graph we would have α = {0,+,−} and A = {0,+,−}2. Notice that we
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always maintain the assumption that self-loops are not possible.

For every pair (i, j) ∈ N there is a pairwise relation a = (at, av) ∈ A such that the relation

from i to j is at and the relation from j to i is av. Since we are considering dyads and not

single relations, we can explicitly model the mutual dependence of at with av.

Indeed, we extend the notion of η as following: we denote Yij = (Yij, Yji), and we let:

Pr(Yij = a | X = x) = ηa(xi, xj) (i, j) ∈ N a ∈ A c, d ∈ C (2.1)

It follows from the definition that
∑

a
ηa(c, d) = 1, ∀c, d ∈ C.

By symmetry of N we have that if a ∈ A then π(a) ∈ A, where π is the reflection operator

defined as π(at, av) = (av, at). Therefore we must have

ηa(c, d) = ηπ(a)(d, c). (2.2)

Since it will be useful in the inference part, we now partition the alphabet into two subsets:

• The set of symmetric relations A0 = {a ∈ A | π(a) = a}

• The set of asymmetric relations A1 = {a ∈ A | π(a) ̸= a}

For instance, for a directed graph, A0 = {(0, 0), (1, 1)} and A1 = {(0, 1), (1, 0)}. Now, the

set A1 is redundant, since we have in the set both a and π(a). Therefore we partition A1

in two subsets A10 and A11 in a way that a ∈ A10 implies π(a) ∈ A11 (notice that there are

many ways to define A10 and A11). We define

A′ := A0 ∪ A10 (2.3)

and we denote by r = |A|, r0 = |A0|, r1 = |A10| = |A11|, so that |A′| = ro + r1 and

r = r0 + 2r1.

15



2.4 Bayesian inference

What we know and what we want to find

In general, given a graph and a known number of classes k, our goal will be to recover the

true attribute vector x∗ and the true parameters π∗ and η∗. We follow a fully Bayesian

approach, using a Gibbs sampler as a Bayesian estimator. A note on the notation used:

uppercase letters stands for random variables, lower case letters for their values. We define

the Bayesian setting:

• From the assumption Pr(Xi = c) = πc, ∀c ∈ C independently, we have that the joint

distribution of X is

Pr(X1 = x1, ..., Xn = xn | π) = πm1

1 ...πmk

k (2.4)

where mc =
∑n

i=1 1(xi = c) is the number of nodes with class c.

• We define the relation count ea(c, d) which counts the total number of relations a

between a node of class c and one of class d:

ea(c, d) = (1 + 1{c = d}1 {a ∈ A0})−1×
∑

(i,j)∈N

1 {yij = a}1 {xi = c}1 {xj = d} (2.5)

note that the first term is used to divide by two in the case a is symmetric and xi = xj,

since we want to avoid double counting.

• By definition of the SBM, the distribution of Y given X,Π and H is given by:

Pr(y | x, π, η) =

(

∏

a∈A

∏

1≤c<d≤k

(ηa(c, d))ea(c,d)
)

×
(

∏

a∈A′

k
∏

c=1

(ηa(c, c))ea(c,c)
)

(2.6)

Just to mention, in the case of an undirected graph, the expression can be written in a

more compact form:

Pr(y | x, π, η) =
n
∏

i=1

n
∏

j=i+1

(η(xi, xj))
yij(1− η(xi, xj))

1−yij (2.7)
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• We have that by Law of Total Probabilities and by independence of X on H

Pr(y, x | π, η) = Pr(y | x, π, η) Pr(x | π, η) = Pr(y | x, π, η) Pr(x | π) (2.8)

therefore, from Eq. (2.4) and Eq. (2.6) the joint distribution of Y,X | Π, H is given by

Pr(y, x | π, η) =πm1

1 · · · πmk

k

×
(

∏

a∈A

∏

1≤c<d≤k

(ηa(c, d))ea(c,d)
)

×
(

∏

a∈A′

k
∏

c=1

(ηa(c, c))ea(c,c)
)

(2.9)

• We assume a known prior density function for Π, H called fΠ,H(π, η). Then, inference

of the class membership is based on the so-called posterior predictive distribution:

Pr(x | y) =

∫

fπ,H,X|Y (π, η, x | y)dπdη (2.10)

and inference on the parameters π, η is based on the so-called posterior distribution:

fΠ,H|Y (π, η | y) =
∑

x

fΠ,H,X|Y (π, η, x | y) (2.11)

• Our aim is to obtain the conditional distribution

fΠ,H,X|Y (π, η, x | y) (2.12)

from which we can recover both the posterior predictive distribution and the posterior

distribution. However, we are not able to compute it analytically, but we will construct

a Gibbs sampler in order to sample from it.
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Gibbs Sampling

Gibbs sampling is a MCMC algorithm introduced by Geman and Geman in 1984 [29], it

is a technique utilized to approximate the posterior distribution (or more generally, a joint

distribution) with any desired accuracy. This method sequentially draws each unknown

random variable or vector, conditioned on the values of all other random variables. As an

example, suppose we want to sample (z1, ...zn) ∈ X = X1 × ...×Xn from a joint distribution

p(z1, ...zn) and that we know how to sample any zi from p(zi | z−i), where z−i means all z’s

except zi. Then Gibbs sampling consists of the following:

Algorithm 1 Gibbs sampler

1: Initialize z0i arbitrarily for i = 1, ..., n
2: for t = 1, 2, ... do
3: for i = 1, ..., n do

4: sample zti from p(zti | zt1, ..., zti−1, z
t−1
i+1 , ..., z

t−1
n )

5: end for

6: end for

The Gibbs sampler defines a Markov chain (Zt)t∈N on X where at each step only one com-

ponent is updated.

Proposition 2.4.1 (Detailed Balance). (Xt)t∈N satisfies detailed balance with respect to the

joint distribution p(z1, ..., zn).

Proof.

For simplicity consider the two-dimensional case. The extension is trivial. Suppose we are

in a time step where we have to sample z1, then:

p (z1, z2) Pr ((z1, z2)→ (y1, z2)) = p (z1, z2) p (y1 | z2) = p (z1, z2)
p (y1, z2)

∑

z′
1

p (z′1, z2)

= p (y1, z2)
p (z1, z2)

∑

z′
1

p (z′1, z2)
= p (y1, z2) p (z1 | z2)

= p (y1, z2) Pr ((y1, z2)→ (z1, z2)) .

When we have to sample z2 the proof would be almost the same. □

Therefore, if the conditional distributions are such that the Markov chain is aperiodic and

irreducible (which is often the case), the Gibbs sampler converges to the joint distribution
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as t→∞.

Gibbs Sampler for the SBM

In our case, we want to be able to sample from fΠ,H,X|Y (π, η, x | y). To do so, we consider

(π, η) as a unique vector and we consider each xi as a distinct element. That is, to do

an analogy with the example of before, we would have (z1, ..., zn+1) = ((π, η), x1, ..., xn),

everything conditioned on y.

In order to apply the Gibbs algorithm, we need to be able to sample from:

a) fΠ,H|X,Y (π, η | x, y)

b) Pr(xi | π, η, x−i, y) for all i = 1, ..., n

For b) we have by definition of conditional probability

Pr(xi | π, η, x−i, y) =
Pr(y, x | π, η)

Pr(y, x−i | π, η)
(2.13)

As seen before, we know how to compute Pr(y, x | π, η) (Eq.(2.9)), and, we can compute

Pr(y, x−i | π, η) by:

Pr(y, x−i | π, η) =
∑

c′

Pr(y, x−i, Xi = c′ | π, η) (2.14)

From Eq.(2.13), Eq.(2.9) and Eq.(2.14) one can obtain:

Pr(Xi = c | π, η, x−i, y) = Qπc
∏

a∈A

k
∏

d=1

(ηa(k, d))da(i,d) (2.15)

Where Q is a normalizing constant and where da(i, d) is the number of nodes j such that

xj = d and yij = a:

da(i, d) =
∑

j:(i,j)∈N

1 {yij = a}1 {xj = d} (2.16)
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Thus we can compute expression b).

For a) we need a specification of the prior distribution fΠ,H(π, η). If the number of vertices

is large enough and the prior relatively flat, the choice of the prior does not have a large

influence on the results. It is often reasonable to assume prior independence between π and

η. In this analysis, we assume the prior for π to be a Dirichlet Dirk(T, ..., T ) where T is a

hyper-parameter. The Dirichlet prior has a strong tendency to favour unequal classes when

T is small, leading to the risk that in early stages the parameters will be trapped in a region

where some of the class sizes are almost 0; for this reason, Snijders and Nowicki proposed to

use T = 100k, which seemed to work well in practice.

Because of the redundancy 2.2 of the η parameter, we need to take more care in defining the

prior for η. For c < d, η(c, d) = (ηa(c, d))
a∈A is an unconstrained r-dimensional vector (and

the case c > d can be obtained directly from the case c < d), while for c = d, this vector is

subject to the constraint ηa(c, c) = ηπ(a)(c, c), ∀a ∈ A10 which amounts to impose r1 equality

relations between the elements of η(c, c) = (ηa(c, c))
a∈A. One can define a new vector

η(0)
a

(c, c) =











ηa(c, c) (a ∈ A0)

2ηa(c, c) (a ∈ A10)
(2.17)

which is a (r0+r1)-dimensional vector without redundant elements, and use this in the Gibbs

sampler since there is a one-to-one map between η(c, c) and η(0)(c, c).

For the choice of the prior, we still use a Dirichlet prior, which will be a r-dimensional

Dirichlet Dirr(1, ..., 1) for η(c, d), c < d and a (r0 + r1)-dimensional Dirichlet Dirr0+r1(1, ..., 1)

for η(0)(c, c).

Remark 2.4.1 (Dirichlet distribution). The Dirichlet distribution of order K ≥ 2 with pa-

rameters α1, . . . , αK > 0, denoted DirK(α1, . . . , αK), has a probability density function with

respect to Lebesgue measure on the Euclidean space R
K−1 given by

f (x1, . . . , xK ;α1, . . . , αK) =
1

B(α)

K
∏

i=1

xαi−1
i (2.18)

where {xi}Ki=1 belong to the standard K − 1 simplex. The normalizing constant is the multi-
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variate beta function, defined in terms of the gamma function as:

B(α) =

∏K
i=1 Γ (αi)

Γ
(

∑K
i=1 αi

) , α = (α1, . . . , αK) . (2.19)

Thanks to Dirichlet priors, it is possible to use well-known results on the Bayesian analysis of

multinomially distributed data to derive the posterior distribution of (π, η) used by the Gibbs

sampler. The result we will use is the Conjugate Prior Theorem for Dirichlet Distributions,

which in our case amounts to the following:

Proposition 2.4.2. If the prior distribution of π is Dirichlet with parameters (Tc)c∈C and

the prior distribution of η(c, d) is Dirichlet with parameters Ea(c, d), while π and the η(c, d)

are a priori independent, then the posterior distribution of (π, η), given the complete data

(y, x), is given by independent Dirichlet distributions with parameters

(mc + Tc)c∈C for π

(ea(c, d) + Ea(c, d))
a∈A for η(c, d), 1 ≤ c < d ≤ k

(ea(c, c) + Ea(c, c))
a∈A′ for η(0)(c, c), 1 ≤ c ≤ k

(2.20)

We can use this result to complete step a) of the Gibbs sampler, using as written before

Tc = 100k, ∀c and Ea(c, d) = 1, ∀a ∈ A, c, d ∈ C with c ≤ d. To summarize, this is the final

Gibbs Sampler we will use:

Algorithm 2 Gibbs sampler for SBM

1: Initialize x0i arbitrarily for i = 1, ..., n
2: for t = 1, ..., tmax do

3: Sample π = (π1, ..., πk) from Dirk(m1 + T, ...,mk + T ).
4: Sample η(c, d), ∀c, d : c < d from the r-dimensional Dirr((1 + ea(c, d))

a∈A)
5: Sample η(0)(c, c), ∀c from the (r0 + r1)-dimensional Dirr0+r1((1 + ea(c, c))

a∈A′)
6: for i = 1, ..., n do

7: sample xti from Pr(xti | π, η, xt1, ..., xti−1, x
t−1
i+1, ..., x

t−1
n , y)

8: end for

9: end for
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2.5 Simulations

We can proceed with the simulation of the Gibbs sampler to analyze its performance on

synthetic data. The implementation of the SBM can be found in SBM ext.py. Firstly I have

created a class called StochasticBlockModel General which generates random graphs with

the distribution of the general SBM, given n,N , k, π, an alphabet of relations A and the η

matrix. Thereafter, the class Gibbs sampler General is used to perform the Gibbs sampling.

It is initialized with the adjacency matrix Y , the set of observed relations N , k and A.

Nowicki and Snijders proposed a method to improve convergence based on assigning initially

T = 10n and then decreasing it linearly to T = 100k in M0 iterations; in the meanwhile,

one has to multiply the parameters of the Dirichlet ea(c, d) + Ea(c, d) by a factor ω which

starts from 1
n

and it is increased linearly to 1, provided that the resulting product is greater

or equal than 1 (otherwise set it to 1). After the first M0 iterations, the algorithm continues

with other M0 iterations with T = 100k. After that, it should start to check for convergence

and stop when convergence is reached. It is possible to run the Gibbs sampler using the func-

tion sample improved(M0), where the method used to improve convergence is implemented,

but after the 2M0 iterations the function simply stops and returns the current configuration.

It is also possible to run the Gibbs sampler without the improvement, using the function

sample(tmax).

We can do some simple checks, and it is easy to see that the model works both in the case

of high connectivity within the cluster and low connectivity between clusters, or vice versa:

this is indeed what was anticipated in the introduction.

As a metric to understand the performance of the inference, I used the normalized mutual

information (NMI), which is a value between 0 and 1, the higher the better, and tells us how

much information we gain of the true classes given the knowledge of the predicted ones. The

relationship between the NMI and the number of errors depends on the number of classes

and on their prior probability. For instance, if n = 100, k = 2 and the two classes are

equally probable, having 2 misclassified nodes out of 100 produces an NMI of around 0.86,

while the same with k = 3 would produce an NMI of around 0.92 (thus higher as k increases).
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Undirected graphs

The first analysis goes as follows: let n = 100, k ∈ {2, 3, 4}, πc = 1
k
∀c ∈ C. We consider undi-

rected graphs, and we set η(1,1)(c, c) = λ and η(1,1)(c, d) = 1−λ, so that there is an edge with

probability λ within classes and 1−λ between classes. Then we study how the NMI depends

on λ. The results are shown in Figure 2.1a. Each data point is obtained from the average

NMI of 7 different simulations (with different graphs). The total number of iterations for

each simulation is set to 600, that is, M0 = 300, even though Nowicki and Snijders considered

values much larger (M0 = 5000); therefore what I did is to check for fast convergence, even

though with an increased number of iterations the performances could slightly improve.

As expected, the average NMI is around 1 for high values of λ, while it is 0 for λ = 0.5,

since it is the case of no structure in the model. In all the cases k = 2, 3, 4 the model is able

to recover quite well the underlying structure until λ = 0.7. With λ = 0.6 only in the case

k = 2 it manages to maintain good performance. For symmetric reasons, the results would

be exactly symmetric in the case λ ∈ [0, 0.5].

(a) Simulation 1: λ / 1− λ probabilities (b) Simulation 2: Low expected degree

Figure 2.1: Results of simulations on undirected graphs

In this previous simulation we were considering highly connected graphs, however, real net-

works are often sparse. If we set the probability of edges between different classes fixed to

0.03, what is the probability γ of having an edge within classes needed to recover the block

structure? The results are shown in Figure 2.1b. Note that the expected degree of each

vertex is given by 0.03 ∗ 50 + γ ∗ 49 ≈ 3+100γ
2

. It is clear from the results that the lower ex-
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pected degree of each vertex diminishes the performance, or at least, makes the convergence

slower. For instance, in the case γ = 0.12 (expected degree = 7.5) the probability of having

an edge within classes is 4 times higher than the one between classes, however, the NMI is

much lower than the corresponding case λ = 0.8 in the example before. Increasing k in this

case diminishes the performances, indeed with this model as k increases the expected degree

decreases, making the convergence slower.

Undirected graphs

To verify the performance of the SBM with undirected graphs, I tried a model with n =

70, k = 3 and η given by :

η = ληplanted + (1− λ)ηrandom (2.21)

that is, we interpolate linearly between ηrandom and ηplanted. ηrandom represents a model such

that there is a directed edge from node i to node j with probability pa independently on the

classes of i and j1, while ηplanted represents a sort of ”rock, paper, scissor” model. It is such

that the probability of having a directed edge from nodes of class 2 to 1, from 1 to 0 and

from 0 to 2 is 2pa, the probability of one within the same class is pa as before, and 0 else.

Increasing λ is as if we shifted the probability of connecting from the class with which we

“lose” to the one with which we “win”. See Figure 2.2 for an illustration.

I used pa = 0.15, so that the expected in and out degrees of each node are around 10, with

the same hyper-parameters as before. The results of the simulations are shown in figure 2.3

The average NMI is around 0 for λ ≤ 0.2, and it grows linearly until λ = 0.7, when it reaches

1, and remains 1 for λ ∈ [0.7, 1].

1Note that it is possible to have at the same time an edge from i to j and one in the opposite direction.
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(a) λ = 0 (b) λ = 1

Figure 2.2: Illustration of the extrema cases of the model.

Figure 2.3: Rock, Paper, Scissors model
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Chapter 3

MFM Stochastic block model

Models shown before assumed the knowledge of the true number of classes; in the case it is

not given, one can estimate it a priori using some selection criteria, and after that apply the

algorithm described before (or different ones). However, disregarding the uncertainty in the

initial phase may result in inaccurate clustering, especially when the community structure is

vague. Geng et al. (2019) [28] proposed to apply the methods for Mixture of finite models

(MFMs) described by Miller and Harrison (2015) [30] which are based on the ones used for

the Dirichlet process mixture (DPMs), in order to build a model that does not assume any

known number of classes.

In this chapter we first introduce mixture models, afterwards we study the MFM Stochastic

Block Model and we use the results from mixture models to build an inference algorithm for

the MFM-SBM and lastly, we simulate the algorithm.

3.1 Mixture models

A mixture model is a statistical model that represents the probability distribution of data

points as a combination of multiple probability distributions. Mixture models are often used

in situations where the data is believed to arise from multiple underlying components and

the goals are to estimate the parameters of these components and to assign each data point

to the most likely component. They are widely used in clustering, density estimation, and

model-based classification tasks. A common issue with finite mixtures (when the number of

components is finite, call it k), is that it could be difficult to find the correct k. The most

natural approach is called Mixture of finite mixtures (MFM): in a full Bayesian perspective,

one treats k like any other unknown parameter and considers a prior on it. Several algorithms

have been proposed for MFM, the most commonly used are based on reversible jump Markov
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chain Monte Carlo. Even though reversible jump is a general technique, it is often complicated

to use since it requires to design of good reversible jump moves, which can be nontrivial.

At the same time, infinite mixture models, such as Dirichlet Process Mixture (DPM), became

popular and well-studied thanks to the fact that there is a general Markov chain Monte Carlo

algorithm which is simple to implement and to adapt for specific cases. Miller and Harrison

(2015) [30] found a way to rewrite the MFM model through various representations used for

DPMs, letting one use the known methods of DPMs for MFMs.

First, we define the Mixture of finite mixtures (MFM) model rigorously:

Definition 3.1.1. The MFM model is defined by the following hierarchical process:

1. Sample the number of components (classes):

K ∼ pK, where pK is the prior p.m.f. on {1, 2, ...}

2. Sample the prior probability distribution over components:

π = (π1, ..., πk) ∼ Dirk(γ, ..., γ) given K = k, where γ is a parameter of the model

3. Sample the component for each data point:

X1, ..., Xn
iid∼ π given π

4. Sample the parameters of each component:

θ1, ..., θK
iid∼ H given K, where H is a prior on the parameter space Θ

5. Sample the data you observe:

Yi ∼ fθXi
independently for i = 1, ..., n given θ,X

Therefore the parameters of the model are the prior distribution on the number of components

pK , the parameter for the Dirichlet distribution γ, the parameter space Θ, the prior on Θ H

and a parametric distribution f defined on the space of the space of the observed data.

Dirichlet mixture processes, since they are infinite mixture models, don’t assume the existence

of a finite number of components k: they assume instead that the number of components

is infinite. We first write a representation of a DPM, called Chinese Restaurant Process

(CRP), also called Blackwell–MacQueen urn process, which is probably easier to understand

and also useful for our purposes, and afterwards we discuss for comparison with MFM the

formal definition of DPM.
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A CRP is described through the Chinese restaurant metaphor: suppose we are in a Chinese

restaurant with infinite tables, where each table represents a cluster, labelled 1, 2, 3, ...; the

first customer is seated at the first table, that is x1 = 1 and every time a new customer i

arrives, he seats at the table c with probability

P (xi = c | x1, . . . , xi−1) ∝











|c|, at an existing table labeled c

α, if c is a new table.
(3.1)

where |c| is the number of costumers at the table c.

The same probability distribution for {Xi}i=1,...,n can be obtained also by defining a discrete

time stochastic process (Ci)i=1,...,n where at each time i the value of the process is a partition

Ci of the set {1, 2, ..., i}. The process is determined as follows (assuming α = 1 for simplicity):

at time i = 1 we set Ci = {1}; then, at time i + 1, we either add the element i + 1 to one

of the blocks c of the partition Ci with probability |c|
i+1

for each block, where |c| is the size of

the block, or we add the singleton {i+ 1} to the partition Ci.
For comparison, we write the definition of the Dirichlet Process Mixture

Definition 3.1.2 (Dirichlet Process Mixture). The DPM model is defined by the following

hierarchical process:

1. Sample the parameters for π:

B1, B2, ...
iid∼ Beta(1, α)

2. Sample the component for each data point:

X1, ..., Xn
iid∼ π given π = (π1, π2, ...) with πc = Bc

∏c−1
d=1(1− Bd)

3. Sample the parameters of each component:

θ1, θ2, ...
iid∼ H, where H is a prior on the parameter space Θ

4. Sample the data you observe:

Yi ∼ fθXi
independently for i = 1, ..., n given θ1:∞, X1:n

B1, B2, ... are needed to construct π, the prior probability distribution over the classes. One

can think of the intuition behind the Bjs in a way similar to the geometric distribution: in

order to be in class d you have to ”fail” to be in class 1, ..., s − 1 and then ”succeed” to be
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in d, where ∀c = 1, 2, ..., Bc is the probability of being in class c given that you are not in

classes 1, ..., c− 1.

A possible approach for our original problem, that is stochastic block model with an unknown

number of components, or also for a more general clustering problem with an unknown

number of clusters, would be to model the underlying process as a DPM and then make

inference based on it. This is a possibility and from some point of view it looks very similar

to an MFM model, however, there are two principal differences: firstly, the prior on the final

number of clusters t is very different (here we use the following notation: clusters are the

groups that we find, components the ones that the model has, which are infinite for a DPM);

in an MFM one has complete control over the prior on the number of components k and as

the sample size n increases, t converges to k almost surely. Instead, in a DPM, the prior on

t has a particular parametric form and diverges with a log n rate as n goes to ∞ . Secondly,

given the number of clusters t, the prior on the size of each cluster differs a lot between MFM

and DPM; in MFM most of the prior mass is on partitions with cluster sizes of the same

order of magnitude; in contrast, for DPM it is on partitions where cluster’s sizes vary widely,

having a few large clusters and many very small ones.

As a result, DPM tends to overestimate the number of clusters, creating new clusters with

few elements. For this reason, MFM is preferable. Miller and Harrison proved that it is

possible to write a Mixture of finite mixtures with a CRP representation (and also other

representations of a DPM) and thus to adapt a Gibbs sampler used for Dirichlet Processes

Mixtures to one for the MFM case.

The result is the following CRP representation of the MFM model:

1. Initialize with a single cluster consisting of element 1 alone:

C1 = {{1}}

2. For i = 2, 3, . . ., place element i in

(a) an existing cluster c ∈ Ci−1 with probability ∝ |c|+ γ

(b) a new cluster with probability ∝ Vi(t+1)
Vi(t)

γ

where t = |Ci−1|.
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and where the coefficient of partition distribution Vi(t) is defined as

Vi(t) =
+∞
∑

k=1

k(t)
(γk)(i)

p(k) (3.2)

where k(t) = k(k− 1) . . . (k− t+ 1), and (γk)(i) = γk(γk+ 1) . . . (γk+ i− 1). (By convention,

x(0) = 1 and x(0) = 1
)

. With respect to the classical CRP, it is as if we were decreasing

the rate of creation of new clusters/tables by a factor Vi (|Ci−1|+ 1) /Vi (|Ci−1|), avoiding the

creation of too many new clusters/tables.

Given a partition C, for c ∈ C we denote yc = (yi : i ∈ c) and the marginal likelihood

m (yc) =
∫

Θ

[
∏

i∈c fθ (yi)
]

H(dθ), with the convention that m (y∅) = 1, thus having:

p(y1:n | C) =
∏

c∈C

m(yc) (3.3)

When H is a conjugate prior for fθ, such that the marginal likelihood m (yc) can be easily

computed, the following Gibbs sampling algorithm can be used to sample from the posterior

distribution on partitions p (C | x1:n):

Algorithm 3 Gibbs sampler for a MFM in CRP representation

1: Initialize C = {[n]} ▷ i.e., one cluster.
2: for τ = 1, ..., τmax do

3: for i = 1, . . . , n do

4: Remove element i from C and place it...
5: in c ∈ C−i with probability ∝ (|c|+ γ)m(yc∪i)

m(yc)

6: in a new cluster with probability ∝ γ Vn(t+1)
Vn(t)

m (yi)
7:

8: end for

9: end for

Where C−i is the partition obtained by removing i and where t = |C−i|. This algorithm is a

direct adaptation of a known algorithm for DPMs (Maceachern, 1994 [31]).

3.2 MFM Stochastic block model

We now consider the case of undirected graphs (which is exactly the case of the Bernoulli

SBM). We Consider the usual notation defined before. Then we define our model as :

30



Definition 3.2.1 (MFM Stochastic Block Model, Bernoulli).

K ∼ pk, where pk is a p.m.f on {1, 2, . . .}

ηcd = ηdc
ind∼ Beta(a, b), for c, d = 1, . . . , K,

π | K ∼ DirK(γ, . . . , γ),

Xi | π,K ∼ π for i = 1, ..., n

Yij = Yji | X, η,K ind∼ Bernoulli (θij) , θij = ηxixj
, 1 ≤ i < j ≤ n.

That is, we define a prior pk for the number of classes K and then given the value of K = k,

we assume that for each pair of classes (c, d), ηcd = ηdc come from a Beta(a, b) prior (which is

actually the special case of the Dirichlet when considering only two possible relations), with

a, b hyper-parameters. π, the probability distribution over classes, comes from a Dirichlet

prior with parameter γ (that in the standard SBM was called T ), and finally for each pair

of nodes (i, j), i ̸= j Yij = Yji are given by a Bernoulli prior, with parameter θij = ηXiXj

as usual. This is exactly the same model as the undirected Bernoulli SBM, except that now

K is not fixed but it is a parameter of the model. A default choice of pk is a Poisson(1)

distribution truncated to be positive, which is assumed through the rest of the chapter.

When we do a posteriori blockmodelling, we want to infer the unknown parameters k, η, x

given what we know: Y (in this case we don’t infer π). To do so we would like to apply

the algorithm 3 described above to our specific model. However, the MFM Stochastic Block

Model is actually different from a Bayesian Mixture Model, indeed if we consider the observed

data Yi to be the i-th row of the adjacency matrix Y , then in a Bayesian Mixture Model Yi

would depend only on Xi, but this is not true in the MFM-SBM since it depends also on

the classes of the other nodes. Geng et al., using the same approach of Miller et al., adapted

Algorithm 3 to the specific case of the MFM-SBM. In particular, we are in the case where H

is a conjugate prior for fθ and therefore it is easy to obtain the marginal likelihood m. The

final algorithm is the following:
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Algorithm 4 Collapsed sampler for MFM-SBM

Initialize x and η.
for τ = 1, ..., τmax do

Update η conditional on x as
ηcd ∼ Beta

(

Ȳ[cd] + a, rcd − Ȳ[cd] + b
)

c, d ∈ {1, ..., k}, c ≤ d
for i = 1, . . . , n do

Update xi from Pr (xi = c | x−i, Y, η)

∝







[|c|+ γ]
[

∏

j ̸=i η
Yij
cxj

(

1− ηcxj

)(1−Yij)
]

at an existing table c

γ Vn(|C−i|+1)
Vn(|C−i|)

m (Yi) if c is a new table

end for

end for

Where k is the number of clusters formed by the current x,

Ȳ[cd] =
∑

(i,j):xi=c,xj=d,i ̸=j

Yij, (3.4)

rcd is defined as:

rcd =
∑

(i,j):i ̸=j

1 (xi = c, xj = d) c, d ∈ {1, .., k} (3.5)

and

m (Yi) =
∏

d∈C−i

[B(a, b)]−1 B

(

∑

j∈d,j ̸=i

Yij + a, |d| −
∑

j∈d,j ̸=i

Yij + b

)

. (3.6)

In this last equation B(a, b) is the two-dimensional Beta function defined in remark 2.4.1.

3.3 Simulations

Implementation of the MFM-SBM model can be found in MFM SBM.py. I used the same

generative SBM as before, in particular in the case of undirected graphs. The class Col-

lapsed Gibbs Sampler implements the Collapsed Gibbs sampler used for the MFM-SBM. In

order to initialize the Gibbs sampler, only the adjacency matrix Y is required; moreover, one

can also choose to change the hyper-parameters, which are γ, a, b described before and kinit,
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which is the number of classes to start with 1. In this analysis I used γ = 1, a = 1, b = 1 and

kinit = 10. The function sample(tmax) is used to run tmax iterations of the Gibbs sampler.

Figure 3.1a shows the NMI of the MFM-SBM in recovering the structure of a network with

k = 3 (blue) and k = 4 (red) and probability of edges λ within the same class and 1− λ be-

tween different classes. It seems that a phase transition occurs, with a critical point between

0.6 and 0.62

Instead, figures 3.1b and 3.2 show the performances of the MFM-SBM for a fixed λ but vary-

ing the number of true classes. The number of iterations is set to 600 in the first simulation

and to 1200 in the second, since for larger ks more iterations are required.

(a) Simulation 1: Varying λ. (b) Simulation 2: Varying the true k.

Figure 3.1: NMI of the simulations

(a) λ = 0.8 (b) λ = 0.7

Figure 3.2: Simulation 2: Predicted number of classes.

1indeed we are not required to start only with one class.
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Chapter 4

Degree-corrected stochastic block
model

4.1 Introduction

From the definition of the (generative) stochastic block model we have used until, in the

case of undirected graphs, every node within a given class has the same degree distribution

and this distribution is a Poisson binomial distribution, indeed the degree K of a node i

of class c is given by the sum K1 + ... + Kk, where k is the number of classes and each

Kd represents the number of edges between the node i and nodes of class d, which is given

by a Binomial distribution with parameter the number of nodes in t ( minus 1 if c = d)

and the probability that a node of class c has an edge with one of class d (which is ηcd).

This distribution is similar in spirit as the Binomial (and the Poisson) distribution, in the

sense that they are peaked around the mean and they do not allow high degree variability.

As a result, the stochastic block model does not account for degree heterogeneity. This is

particular problematic when we actually have a degree variability within classes: with the

stochastic block models considered before we would end up dividing, for instance, between

high-degree and low-degree nodes, and not between classes. As we have seen in Chapter 1,

most real networks follow a power law, or similar, degree distribution, and thus have high

variability of degrees. For this reason, the standard stochastic block model works poorly

on real data. In this section we are going to solve this problem, following the approach

of Karrer and Newman (2011) [26] and developing the so-called Degree-corrected stochastic

block model. Note that, the MFM extension described in the past chapter, can be applied,

with some minor changes, to the degree-corrected SBM (which was indeed proposed before).

Karrer and Newman used another approach to do a posteriori blockmodelling, which is based
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on Maximum likelihood estimation and a greedy algorithm (and not on Bayesian statistics

and Gibbs sampling), therefore we will follow a different approach to what followed so far.

4.2 A new definition for the standard Stochastic Block

Model

In order to simplify calculations, we change the definition of the stochastic block model: we

now allow for multi-edges, that is, more than one edge connecting two nodes, and self-edges,

that is edges with endpoints on the same node. Even though many real-world applications

do not allow for such edges, allowing multi-edges and self-edges is something often done for

random graph models for sparse networks since the difference vanishes as the size of the

network n becomes large.

Now, since we are allowing multiple edges, instead of considering the probability of an edge

between two nodes of classes c, d respectively, we consider the expected number of edges,

called ψc,d. The actual number of edges between i and j will be given (independently) by a

Poisson distribution with mean ψc,d. Notice that, in the limit of n large for sparse graphs,

there is no difference between this model and the canonical one, since the expected number

of edges becomes equal to the probability of an edge.

Let G be a realization of the model; we denote as usual by Y the adjacency matrix of G,

where Yij is equal to the number of edges between node i and node j if i ̸= j and twice that

number if i = j. We let ωc,d be equal to ψc,d if c ̸= d and equal to 2ψc,d if c = d, which is the

expected value of Yij with Xi = c and Xj = d. Thus, the probability of a graph G (which is

equivalent to the probability of Y ) given Ω, X is given by:

Pr(G | ω, x) =
∏

(i,j):i<j

(

ωxixj

)Yij

Yij!
exp

(

−ωxixj

)

×
∏

i

(

1
2
ωxixi

)Yii/2

(Yii/2)!
exp

(

−1

2
ωxixi

)

(4.1)

Which can be rewritten as

Pr(G | ω, x) =
1

∏

i<j Yij!
∏

i 2Yii/2 (Yii/2)!
×
∏

cd

ω
mcd/2
cd exp

(

−1

2
ncndωcd

)

, (4.2)
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where nc is the number of vertices in class c and

mcd =
∑

ij

Yij1(xi = c)1(xj = d)

Following a maximum likelihood approach, we want to maximize Eq.(4.2) with respect to ω

and x, which is equivalent to maximize its logarithm, the log-likelihood, which is given by,

neglecting terms that do not depend on ω or x:

log Pr(G | ω, x) =
∑

cd

(mcd logωcd − ncndωcd) (4.3)

By first order conditions, we get that the optimal ω is given by

ω̂cd =
mcd

ncnd

(4.4)

Now, with the optimal ω, the log-likelihood (4.3) becomes

log Pr(G | ω̂, x) =
∑

cd

mcd log (mcd/ncnd)− 2m (4.5)

where m is the total number of edges in the network, thus a constant that we can neglect,

obtaining

L(G | x) =
∑

cd

mcd log
mcd

ncnd

(4.6)

which we will call the unnormalized log-likelihood for the group assignment x. This is the

final objective we want to maximize. The larger the objective for a given assignment x, the

more probable x is: the one that maximizes Eq.(4.6) will be the most likely one, what we

want to find. Eq.(4.6) has an information-theoretic interpretation: by adding and dividing

by constant factors (m,n, 2) we can rewrite it as

L(G | x) =
∑

cd

mcd

2m
log

mcd/2m

ncnd/n2
(4.7)
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Suppose now to pick randomly an edge from the graph. Let A be the random variable

representing the class of one of the two endpoints (taken at random) and B the one related

to the class of the other endpoint. Then, pK(c, d) := Pr(A = c, B = d) = mcd/2m. At the

same time, if we were placing edges at random without taking care of the classes, as if we

were considering a multigraph version of the Erdős–Rényi random graph, we would (a priori,

before sampling the actual graph) get p1(c, d) := Pr(A = c, B = d) = ncnd/n
2m Therefore

we can rewrite Eq.(4.7) as

L(G | x) =
∑

cd

pK(c, d) log
pK(c, d)

p1(c, d)
(4.8)

which is the Kullback-Leibler between pK(c, d) and p1(c, d). What we have obtained is the

following: for the standard Stochastic block model, the most likely assignment x is the one

that maximizes KL(pK ∥ p1), which can be thought as, loosely speaking, the assignment

that maximizes the surprise compared to the so-called null model, which in this case is the

Erdős–Rényi random graph. However, using the Erdős–Rényi random graph as a null model

is problematic for real networks, because it produces Poisson-distributed networks, which are

very unrealistic, as discussed in Chapter 1.

4.3 Degree-corrected SBM

Our aim is to incorporate the degree heterogeneity of nodes in our model. To do so, we define

the degree-corrected stochastic block model as follows:

Definition 4.3.1 (Degree-corrected SBM). Consider the standard Stochastic block model

defined before. The degree-corrected stochastic block model with parameters θ = (θ1, ..., θn) is

defined in the exact same way, except that for any pair of nodes i, j, with i ≤ j, Yij is now

given by a Poisson(θiθjωXiXj
). In particular, the parameter of the Poisson does not depend

only on the classes of i and j, but also on i and j.
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With this definition the probability of a graph G given Θ, X and Ω becomes:

Pr(G | θ, ω, x) =
∏

(i,j):i<j

(

θiθjωxixj

)Yij

Yij!
exp

(

−θiθjωxixj

)

×
∏

i

(

1
2
θ2iωxixi

)Yii/2

(Yii/2)!
exp

(

−1

2
θ2iωxixi

)

.

(4.9)

Since the θ parameters are arbitrary up to a multiplicative constant for each class, that would

be absorbed into ω, we can impose for every class c:
∑

i:xi=c θi = 1. With this constraint we

can simplify Eq.(4.9) and, with a similar argument as before and ignoring constant terms,

one gets that the loglikelihood is given by:

log Pr(G | θ, ω, x) = 2
∑

i

ki log θi +
∑

cd

(mcd logωcd − ωcd) (4.10)

hence obtaining that it is maximized for

θ̂i =
ki
κxi

, ω̂cd = mcd (4.11)

where ki is the degree of node i and κc, which is called stub, is defined as the sum of the

degree of vertices in class c. That is,

κc =
∑

d

mcd =
∑

i:xi=c

ki. (4.12)

Let us denote with ⟨.⟩ the average value over an ensemble of graphs with the same parameters.

A remarkable property of this model is that it preserves both the expected number of edges

between classes c and d :

∑

(i,j):xi=c,xj=d

⟨Yij⟩ = mcd c, d ∈ C (4.13)

and the expected degree of each node i:

∑

j

⟨Yij⟩ = ki i = 1, ..., n (4.14)
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In contrast, the standard SBM preserves only the expected number of edges between classes,

since the average of the degree of each node will be the same among a class.

Back to the loglikelihood, substituting the optimal θ and ω it one can obtain:

L(G | x) =
∑

cd

mcd log
mcd

κcκd
(4.15)

Note that the only difference between this degree-corrected log-likelihood and the standard

one, is that, instead of having the term ncnd one has κcκd, that is, instead of having the

number of members of each class, one has the stubs of those classes.

We can proceed in the same way as before with the information-theoretic interpretation: up

to constant terms and multiplications by constants, we can rewrite the log-likelihood as

L(G | x) =
∑

cd

mcd

2m
log

mcd/2m

(κc/2m) (κd/2m)
(4.16)

Now, consider a model in which we fix the expected degree of each node to be the degree of

that node in the observed graph. Then, the joint p.m.f. of A,B (defined above) becomes

pdegree(c, d) := Pr(A = c, B = d) =
κc
2m

κd
2m

. (4.17)

Consequently, Eq.(4.16) can be written as KL(pK ∥ pdegree). As a result, loosely speaking,

the most likely assignment x is the one that maximizes the surprise with respect to the null

model used for pdegree, which is a model that incorporates the degree of each vertex.

4.4 The greedy algorithm

A useful property of the log-likelihood is that it is easy to compute its change when we modify

the assignment of a single node i from class c to any class d. Let’s define a(z) := 2z log(z)

and b(z) := z log(z), with the convention a(0) = b(0) = 0. Then it is not difficult to check

that we can write the change in the log-likelihood given by changing the class of i from (c,
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d) to d as:

∆L =
∑

t ̸=c,d

[a (mct − kit)− a (mct) + a (mdt + kit)− a (mdt)]

+ a (mcd + kic − kid)− a (mcd) + b (mcc − 2 (kic + ui))− b (mcc)

+ b (mdd + 2 (kid + ui))− b (mdd)− a (κc − ki) + a (κc)− a (κd + ki) + a (κd)

(4.18)

where:

• kit is the number of edges from vertex i to vertices in class t excluding self-edges;

• ui is the number of self-edges of vertex i.

This computation can be done in O(K + ⟨k⟩) and thus finding the d that maximizes the

change can be done in O(K(K + ⟨k⟩)). Since those computations can be done quickly, it’s

possible to implement local vertex switching algorithms, such as Monte Carlo methods like

the Metropolis-Hastings algorithm. However, those are slow to converge in general, and

Karrer and Newman proposed instead a greedy algorithm which gives better results.

The algorithm goes as follows:

• initialize at random x

• Repeat until there is no increase in the objective function:

– let the set of available nodes be the set of all nodes

– repeat until you move every node:

∗ select among all the available nodes and all possible classes d the move i← d

(node i becomes of class d) that gives the largest increase in the objective (or

least decrease, since it is not allowed to remain in the same class), obtained

from Eq.(4.18) and apply it

∗ remove the node i previously selected from the set of available nodes

– Among all the configurations of x scanned throughout the inner loop, select the

one with the highest log-likelihood, obtained from Eq.(4.15) and let x be equal to

that one (that is, start the new loop with this configuration)
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Algorithm 5 Greedy algorithm for degree corrected SBM

1: initialize at random x
2: repeat

3: Available nodes = {1, ..., n}
4: while Available nodes is non-empty do

5: apply the move i ← d that leads to the largest ∆L, with i ∈ Available nodes,
d ̸= xi

6: remove i from Available nodes
7: end while

8: Let the new configuration x be the one with the highest objective among all the ones
scanned throughout the inner loop

9: until there is no increase in the objective function
10: return x of the last but one iteration (the one with the largest objective)

Which can be summarized as follows:

The idea is that, at every iteration, we move every vertex at most exactly once, and among

all the configurations scanned, we select the one with the highest score.

We note that the authors suggested running more simulations with different random seeds

and taking the assignment x which gives the best score. This is a common fact/issue in

deterministic algorithms which depend on a stochastic initial condition.

4.5 Simulations

Implementation of the Degree Corrected SBM can be found in DC SBM.py. The class

GreedyAlgorithm can be used to run the greedy algorithm on an adjacency matrix Y given

a known number of classes k. To run the algorithm it is sufficient to use the function in-

fer(n samples), where n samples is the number of simulations to run (the best configuration

is kept). The classes Multigraph SBM noDC and Multigraph SBM DC can be used to gener-

ate non-degree corrected and degree corrected SBMs respectively, without constraints. The

classes Separated groups, Core Periphery, Hierarchical can be used to generate the models

described later.

We test the greedy algorithm on synthetic data. How to generate them? Given a number of

nodes n and a class assignment x (or equivalently a number of classes k with an associate

probability for each class), the parameters of the (generative) DC-SBM are θ and ω. Suppose

we want to fix the expected degree of each node, then we can generate a network with this

constraint by setting for i = 1, .., n θi from Eq.(4.11), where ki is in this case the expected
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degree of i and the stub is given by Eq.(4.12). For the choice of ω we have more freedom in-

stead, provided that equations (4.11) and (4.12) are respected, which is equivalent to impose

∀c ∈ C,∑d∈C ωcd = κc. Following the approach of Karrer and Newman, we can let ω be a

convex combination of two different structures, in this form:

ω = λωplanted + (1− λ)ωrandom (4.19)

where ωrandom represents a fully random network, so that ωrandom
cd is the expected value of mcd

in a random graph preserving the degree sequence but without a block structure. ωrandom
cd is

thus given by κcκd

2m
.

Instead, ωplanted is chosen to create the group structure. A possible example, which we call a

separated groups structure, is:

ωplanted =















κ1 0 0 0

0 κ2 0 0

0 0 κ3 0

0 0 0 κ4















. (4.20)

With this choice of ωplanted, when λ = 1 all edges are confined within communities, with no

connections between different communities. Conversely, when λ = 0, edges are distributed

randomly, maintaining the degree sequence. More complicated choices of ωplanted are also

possible, as for instance a core-periphery structure (left) (with κ1 ≥ κ2) or a hierarchical

structure (right) (with A ≤ κ1, κ2)

ωplanted =





κ1 − κ2 κ2

κ2 0



 , ωplanted =









κ1 − A A 0

A κ2 − A 0

0 0 κ3









(4.21)

We can thus study how the Degree Corrected stochastic block model is able to recover those

structures as λ varies and eventually compare it with the Standard Stochastic Block model.

For instance, in figure 4.1 is displayed the average NMI as a function of λ for a Separated
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Groups model with n = 150, k = 2 and expected degrees chosen randomly from 5, 10, 12, 20.

The curve is similar to the ones obtained by Karrer and Newman. Instead of considering

Figure 4.1

multigraphs, as discussed so far, it is possible to impose the same conditions required in

Chapter 2 for binary graphs, setting to zero the diagonal elements of the adjacency matrix

and cutting at 1 the values in Y greater than 1. Since we are in the sparse regime the

correction is not relevant and with this new adjacency matrix, we can compare the results

of the Degree Corrected SBM with the SBM defined in Chapter 2. For instance, figure 4.2

shows the results of the inference on a Separated Group model with n = 100, k = 3, λ = 0.8

and with a degree distribution following a power law with γ = 2. As expected, we see that

the DC-SBM is able to find the true structure in such a network, while the standard SBM

cannot: indeed it divides nodes only according to their degree.

As a final analysis we can study the performances of the DC-SBM on the three models

described before as a function of λ, and compare them to the ones of the standard SBM.

Results are shown in figure 4.3. For all of them n = 100, n samples = 7 and M0 = 300.

In the case of the Separated groups model the expected degree of each node was chosen

randomly between 5 and 15 independently of the class, while in the Core Periphery model it

was chosen between 5 and 20 if the node was in the core group, from 5 and 10 if it was in the

periphery group. For the Hierarchical model, it was chosen from 5,10 and 20 independently

of the class, and moreover, A was set to 60. Generally, the DC-SBM performs much better
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than the standard SBM, however, the standard SBM is still able to reach relatively decent

results, probably because the degree variation is moderated, in contrast with the scale-free

network of figure 4.2.

(a) True classes (b) Prediction of DC-SBM (NMI = 0.75)

(c) Prediction of standard SBM (NMI = 0.02)

Figure 4.2: Scale free network, comparison of results
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(a) Separated groups model (b) Core-Periphery model

(c) Hierarchical model

Figure 4.3: Comparison of DC-SBM with the standard SBM in the three models described
above
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