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1 THE IMPORTANCE OF TOPIC MODELING

In today’s age, the volume of data generated daily is overwhelming, thus making it increasingly

challenging to extract meaningful insights efficiently. Inundated by this deluge of information,

the importance of topic modeling emerges as a crucial tool for structuring and understanding

vast corpora of text, as it allows us to unveil hidden themes and patterns.

Indeed, statistical learning techniques facilitate the arduous action of categorizing and distilling

textual content into coherent and interpretable clusters: models identify structures, measure the

strength of the relationships and estimate inference on the data, finding application in different

fields.

In the realm of natural language processing, topic models have become indispensable tools for

tasks such as document clustering and, more generally, information retrieval. For instance, they

help organizing vast collections of research papers, facilitating the access to relevant literature

based on thematic content rather than keyword matching alone.

Their focus on the connections and relationships between entities rather than on the entities

themselves provides a unique approach to analyse complex systems of any kind, though they

were first conceived as text-mining tools. In genetics, for example, they have been employed

to identify patterns in gene expression data, leading to breakthroughs in understanding genetic

functions and disease mechanisms. Similarly, they are used to detect recurring visual patterns

and themes in images, enabling automated annotation and organization.

With data growing in both scale and complexity, the role of topic modeling becomes crucial.

Statistical models in the field provide a systematic and rigorous framework that is essential not

only in distilling large volumes of unstructured data into meaningful, interpretable themes, but

also opens up new avenues for discovery and innovation across a wide range of disciplines by

testing hypothesis.

Despite the vast potential, topic methods are complex and pose significant challenges, and, at

times, the distributions used to model the texts examined are intractable, especially during the

inference phase. For this reason, we need to use approximations with the scope of simplifying

the computation, without sacrificing too much efficiency.
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This thesis will focus precisely on these methods. After refreshing some necessary statistical

fundamentals and defining the state-of-the-art models, the main inference algorithms proposed

in the literature will be explored; additionally, a practical application on real-world data will be

used to show the effectiveness of one them on the two models presented.

The ultimate scope of this work is to analyze and compare different inference algorithms in the

context of topic modeling, providing a robust methodological framework. By explaining in a

clear way the statistical fundamentals, evaluating well-known methods and their variation, and

testing their application to tangible data, my goal is that of producing a comprehensive review to

not only approach, but also understand exhaustively the difficulties related to topic models and

how to overcome them.
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2 STATISTICAL FOUNDATIONS

2.1 Dirichlet Distribution

The Dirichlet is a family of continuous distributions parameterized by a vector of positive real

numbers and can be thought as a multidimensional Beta over the unit simplex, that is, a distri-

bution over distributions.

Given θ = (θ1, . . . , θn) and α = (α1, . . . , αn), we say that θ ∼ Dir(α) iff:

p(θ) =
1

B(α)

n∏
k=1

θαk−1
k 1{θi ∈ S} S = {θ ∈ Rn : θi ≥ 0,

n∑
i=1

θi = 1}

=
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏
k=1

θαk−1
k 1{θi ∈ S}

The support of this distribution is the set of n-dimensional probability vectors, i.e. those vectors

with entries in the interval [0, 1] whose sum is 1. Technically, the density of the Dirichlet is

defined over a simplex, which is, by definition, (n − 1) dimensional, and it usually serves as a

prior in Bayesian statistics, due to its conjugacy with the multinomial distribution, which will

turn extremely useful during inference.

From θ ∼ Dir(α), it follows that x|θ ∼ Multinomial(θ,α) and we get:

p(θ) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏
k=1

θαk−1
k

p(x1, . . . , xn|θ) =
(
∑n

i=1 αi)!∏n
i=1 xi!

n∏
k=1

θxkk

⇒ p(θ|x1, . . . , xn) ∝ p(x1, . . . , xn|θ)p(θ)

∝
n∏
k=1

θxkk

n∏
k=1

θαk−1
k ∝

n∏
k=1

θxk+αk−1
k ∼ Dir(x+ α)

This is because the Dirichlet is a distribution over a vectorα of concentration parameters. Hence,

when θ is sampled, θ represents a probability distribution over categories, and sampling a x given

a θ is equivalent to sampling from a multinomial.

When used as a prior, the symmetry is particularly useful, as there is no prior knowledge favoring

one component over another: in this case, all of the elements making up the parameter vector α

have the same value, and the distribution can be parametrized by a single scalar value α, called
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the concentration parameter.

2.2 Dirichlet Process

The Dirichlet process (Ferguson, 1973) provides a framework for modelling non-parametric

probability distributions, enabling the sampling of cluster assignments.

Given a measurable space (Θ,B), the DP is defined by a fixed probability measureG0 on Θ and

a concentration parameter α, the first characterizing the underlying structure of the data, and the

second influencing the variability of the process (the higher α, the more variable the process).

The Dirichlet Process DP(α0, G0) with α0 ∈ R+ is defined as the distribution of a random

G over the space of probability measures on Θ, such that, for any finite measurable partition

(A1, . . . , Ar) of Θ, it is:

(G(A1), . . . , G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar))

Operatively, the DP takes a Dirichlet distribution G and generates a new distribution based on

G, with α0 regulating how close the new one is to the old one (the higher α, the closer to G).

This justifies:

E(DP(α0, G0)) = E(Dir(G0))

A way to view the functioning of the process is the so-called stick breaking construction, where

we iteratively sample vi ∼ B(1, α) and compute the clusters’ weights πi = vi
∏i−1

j=1(1 − vj).

The resemblance to the stick-breaking part can be seen by considering πi as the length of a piece

of a stick: starting with a unit-length stick, at each step we break off a portion of the remaining

stick according to vi, and assign it to πk. An important remark to point out here relates to the

fact that while G0 may be continuous distribution over Θ, the DP assigns to each atom sampled

from G a discrete mass, such that G =
∑

i πiθψi
, with ψi i.i.d. from G0.

WhenG0 is continuous, the weights represent the proportions of the total population that belong

to each cluster, and the infinite-dimensional nature of the DP allows for an unlimited number

of potential clusters. The Dirichlet Process offers a probabilistic mechanism for modeling an

infinite mixture model, where the number of mixture components is potentially unbounded and

not specified a priori.
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Figure 1: The rectangle is a restaurant and the circles are the tables. The probability of
an incoming customer to sit at any table will be proportional to the number of people
that are already seated there.

2.3 Chinese Restaurant Process

Consider a restaurant with a potentially unlimited number of tables and clients, φk indicating the

table customer θk is assigned to. Whenever a new person comes in, they will sit at an already

occupied table with probability proportional to the mk customers seated there and will choose

instead a new table with probability proportional to α0. Mathematically, we can model the

probability for the ith customer, conditioned on the previous ones, to be:

θi|θ1, . . . , θi−1, α0, G0 ∼
K∑
k=1

mk

i− 1 + α0

δφk +
α0

i− 1 + α0

G0 (1)

And it is evident from this that the more frequently a point φk is drawn, the more it is likely

to be drawn in the future. Despite such probability is conditional on the table assignments of

previous customers and the tendency to join already occupied tables, the intrinsic randomness

of the process makes the probability of sitting at new tables (i.e. generating new clusters, or

themes) not negligible. For this reason, it is important to notice that the CRP cannot be used

to consistently estimate the number of topics in topic model since it diverges as the sample size

grows infinitely.
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3 HISTORY OF TOPIC MODELING

Significant progress has been made on the problem of modeling collections of discrete data and

different methodologies have evolved through the time, each increasing the level of complexity

in attempt to offset the limitations observed in the preceding approaches.

Here I shortly present a list of techniques employed before the formulation of Latent Dirichlet

Allocation and Hierarchical Dirichlet Process.

3.1 tf-idf

The tf-idf scheme (Salton and McGill, 1983) measures how important a word is to a corpus in

a collection, adjusted for the fact that some words appear more frequently in general.

A basic vocabulary of terms is chosen and, for every document, a count of the occurrences of

each word is formed. After normalization, this frequency count is multiplied with an inverse

document frequency count, which is a proxy for the number of occurrences of a word in the

entire corpus, but with lower values for the terms that appear the most. Resulting in a matrix

of the form term-by-document, with the tf-idf values for each of the documents, this scheme

reduces any corpus of arbitrary length to fixed-length vectors of real numbers, also enabling the

comparison accross collections.

However, while it provides a straightforward mean to identify important terms, this approach

is limited in that it does not account for the semantic relationships between words, nor does

it capture any underlying structure within the documents, hence it offers little insight into the

statistical patterns that may exist within the collection.

3.2 LSI

LSI (Deerwester et al., 1990) introduces an advancement over the previous technique reducing

the dimensionality of the term-document matrix: using singular value decomposition, it finds

a subspace for the tf-idf features that captures most of the variance in the corpus, resulting in

significant compression, while preserving important semantic structures and capturing aspects

of basic linguistic notions, by projecting terms and documents into a shared latent space.such

as synonyms. The document-by-term matrix is broken down in the document-by-topic and the
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topic-by-term matrices, which measure how topics (terms) are related to documents (topics),

whereas the singular values represent each topic’s relevance in the corpus.

Unfortunately, the linear nature of dimensionality reduction poses the risk of discarding valuable

information particularly in cases where complex, non-linear relationships exist. Moreover, the

model struggles with out-of-vocabulary terms that were not present in the train dataset, limiting

its flexibility in handling new data.

3.3 Mixture of unigrams

The Mixture of Unigram marks a significant shift from the aforementioned algebraic methods as

it first formulates a probabilistic framework. Each document is assumed to be generated from a

single latent topic z, with the words being sampled from a multinomial distribution conditioned

on it. Specifically, the probability of a document is given by:

p(w) =
∑
z

p(z)
N∏
n=1

p(wn|z)

Where p(z) is the probability of a topic under an empirical distribution and p(wi|z) is the prob-

ability of drawing a word given the topic.

Despite the probabilistic shift, the model is limited by the assumption that each document is

generated from a single topic, which is often unrealistic. On top of that, the model’s empirical

nature does not guarantee an adequate level of flexibility, as it can only produce meaningful

results for known documents, i.e. the ones that are part the training set.

3.4 pLSI

The pLSI technique (Hofmann, 1999) builds upon the Mixture of Unigrams and introduces a

generative probabilistic model where each document is represented as a different mixture of

topics, allowing the words in such documents to be sampled them from a mixture of multinomial

random variables, and thus to be different.

Let d be a document label andwi be a word conditionally independent given an unobserved topic
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z. pLSI posits:

p(d, wn) = p(d)
∑
z

p(wn|z)p(z|d)

Where p(d) is the probability of a label and p(wn|z)p(z|d) are the probabilities of choosing a

topic and a word given that topic. Each word is generated from a single topic, but different words

in the same document may come from different topics, resulting in a more flexible and realistic

approach.

Still, the main issue with pLSI is the lack of a predictive approach, which is instead necessary

if one wants to integrate unseen documents. In this situation, the Bayesian approach would be

an appealing option for inducing predictive rules, but not employing it forces the number of

estimated parameters to grow proportionally with the size of the corpus, leading to overfitting

and poor generalization.
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4 LATENT DIRICHLET ALLOCATION

LDA (Blei et al., 2003) is a generative model for a corpus of texts. Documents are represented as

random mixtures over latent topics, where each topic is identified by a distribution over a given

set of words.

4.1 The Model

Define a generative process for every document w in corpus D:

1. Set the length of the document to N ∼ Poisson(ξ)

2. Sample a mixture of topics θ ∼ Dir(α) from a vector α of concentration parameters

3. For each word wn:

(a) Choose a topic zn|θ ∼ Multinomial(θ)

(b) Choose a word wn|zn, β with probability p(wn|zn,β)

Some simplifying assumptions are necessary for the model to operate correctly. First of all, the

number of topics k in the Dirichlet and the dimension of the matrix parameter β governing the

word distributions are fixed. Furthermore, the length N of the document is neglected, as it can

be treated independently of other variables and is not crucial to our scope.

Given the parameters α and β, which regulate the mixture of topics and words for the document,

respectively, the joint probability of observing a document with topic mixture θ, set of topics z

and words w is:

p(θ, z,w|α,β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn,β) (2)

Where p(θ|α) samples a mixture of topics in the simplex, p(zn|θ) chooses a topic from the mix-

ture and p(wn|zn,β) selects the words for the document.

It is essential to set LDA apart from other simpler methods, such as the Dirichlet-Multinomial

clustering model, as in the latter we have a distribution of topics over the whole corpus, but not

over the single documents, implying that each of them will contain terms pertaining to a single

topic. Hence, we classify models of this type as two-level, while LDA falls into the three-level

category, providing generally higher flexibility and a better fit for real-world data.
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Figure 2: The inner simplex over z is embedded in the outer one over w, the corners
of each simplex represent p = 1 for a single wi, or zi, to come up, and the shading is
the distribution over the mixture of topics from which the words are drawn.

Another aspect of LDA is the concept of exchangeability. In topic modeling, a relevant issue

revolves around the order of the words, but this is often eluded adopting the bag of words as-

sumption, stating that the order of the words in a document can be neglected.

To justify this, Blei et al. rely on de Finetti’s theorem, which provides a characterization of the

invariance with respect to the oredring in the context of conditional independent variables. In

our specific case, assuming that the joint distribution is invariant to permutation allows to focus

only on the underlying topics that generated the words themselves.

Since in LDA we assume that words are generated by topics under fixed conditional distributions

and that those topics are infinitely exchangeable within a document, we can exploit De Finetti’s

theorem to rewrite (2) as the probability of a sequence of words and topics:

p(θ, z,w|α,β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn,β)

⇒ p(z,w|α,β) =
∫
p(θ|α)

N∏
n=1

p(zn|θ)p(wn|zn,β) dθ
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4.2 Comparison with other models

To better understand LDA, it can be useful to compare it with its predecessors, particularly in

terms of their geometric interpretations, which helps clarifying the relationship between them.

As shown in figure 2, imagine a space, or simplex, representing all possible terms in a document

and another representing all possible topics. The first simplex is embedded within the second

because it arises, by definition, from combinations of words. For the sake of completeness,

we shall point out that each simplex has a governing distribution, with the corners of the outer

simplex corresponding to distributions where a single word has probability one to come up. In

this setup:

• The Mixture of Unigrams samples each word in a document from a single topic chosen

among the corners of the topics’ simplex

• pLSI draws each word in a training document from a random topic, which is itself chosen

under an empirical document-specific distribution over the topics’ simplex

• LDA generates the words for both observed and unseen documents from a topic selected

by a randomly parameterized distribution over topics.

While it may be difficult to grasp the differences between the approaches from the rest of the

discussion, it is evident here that each model is characterized by increasing levels of complexity,

gradually improving the ability to capture the intricate patterns of interest.
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5 HIERARCHICAL DIRICHLET PROCESS

Having established an understanding of the process in section 2, it is now time to explore its

application as a prior distribution in Dirichlet Process Mixture Models and further extend it to the

Hierarchical Dirichlet Process (Teh et al., 2004), a non-parametric generative model designed

for clustered data, where each group is represented as a mixture of potentially infinite latent

topics, and each topic is itself a distribution over a given set of words.

5.1 Dirichlet Process Mixture Model

In a mixture model based on the Dirichlet Process, clusters θi|G are distributed according to a

random G and points xi|θi are drawn independently from a distribution F (θi) over the clusters.

Moreover, since G is represented with a stick-breaking construction, θi takes on value φk with

probability πk. If we place now a symmetric Dirichlet prior over a given L number of mixture

components, this yields the construction of the following model:

1. Place a prior over the weights π|α0 ∼ Dir(α0/L, . . . , α0/L)

2. Sample the mixture components φk|G0 ∼ G0

3. Choose the components from the mixture zi|π ∼ π

4. Draw xi|zi, (φk)L
k=1 ∼ F (φzi)

So that G =
∑L

k=1 πkδφk . Eventually, we can extend this model to an infinite limit of finite

mixture components by letting L → ∞ and this will turn extremely useful for its applicability.

Indeed, though with minimum probability, the DP always allows a new cluster to arise.

5.2 The Hierarchical Model

Hierarchical models are characterized by the use of additional layers of hierarchy, increasing the

complexity, but also guaranteeing higher flexibility. In our case, HDP is particularly well-suited

for grouped data, where each group may exhibit its own unique clustering structure, while still

sharing global characteristics across groups, suggesting the need for a level that govern docu-

ments assigned to the same topics and another one for documents of the whole corpus.
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Figure 3: Each rectangle represents a restaurant and the circles are the tables. The
probability of an incoming customer to sit at any table will be proportional to the num-
ber of people that are already seated there.

To illustrate the concept, recall the Chinese restaurant metaphor and suppose there is now an

entire franchise of such restaurants. There is a shared menu (set of parameters) across the whole

franchise and a single dish (cluster, or topic, parameters) is served per table (cluster, or topic) as

soon as it is populated by the first customers (data, or documents), which implies that all clients

seated at the same table will share the same dish, but that different tables, within or across

restaurants, may or may not be served with the same dish.

The figure above represents the structure of a restaurant in the franchise, where customer θji

eats dish φjt, served according to the base measure G0. Specifically, denote with tij the table

in restaurant j where customer i seats and with kjt the dish served at table t in restaurant j.

Moreover, njtk stands for the number of clients in restaurant j at table t eating dish k, whilemjk

represents the number of tables in restaurant j serving dish k. Recalling (1) and integrating over

the dishes, the probability for a new customer coming into the restaurant is:

θji|θj1, . . . , θji−1 ∼
mj.∑
t=1

njt.
i− 1 + α0

δψjt
+

α0

i− 1 + α0

G0 (3)

If needed, the model provides a way to sample dishes when new tables get occupied. Clearly,

there is also the hierarchical analog of the mixture model, where β is a global vector and πj is

already group-specific. Accordingly, we have:

1. Place a prior over the weights β|γ ∼ Dir(γ/L, . . . , γ/L)

2. Generate the in-group masses πj|α0,β ∼ Dir(α0β)
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3. Sample the mixture components φk|G0 ∼ G0

4. Choose the components from the mixture zji|πj ∼ πj
5. Draw xji|zji, (φk)L

k=1 ∼ F (φzji)

So that G0 =
∑L

k=1 βkδφk and Gj =
∑L

k=1 πjkδφk . The stick-breaking condition is respected

both at a base and at a group-specific level, indicating that we have induced a DP on an additional

layer. This structure ensures that clusters are shared across groups, but the relative importance

of each cluster can vary from group to group, allowing for both global consistency and local

variability in the data.

The HDP’s ability to model complex, hierarchical data structures makes it a powerful tool in

many applications, particularly in scenarios where the number of underlying clusters is unknown

and potentially infinite. Its flexibility and non-parametric nature allow it to adapt, providing a

robust framework for modeling grouped data with shared characteristics.
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6 INFERENCE

Inference represents the main problem in topic models, and it is concerned with estimating the

latent variables and parameters from the observed data. More precisely, it involves determining

the distribution of topic proportions and assignments for each word in a document, conditioned

on the observed words and the hyperparameters of the model.

However, this is a very complex task. In LDA, for example, we could try use the probabilistic

framework defined in the previous section, aiming to compute the posterior distribution of the

latent variables, namely the topic proportions: using (2) and conditioning on the given docs, we

would get:

p(θ, z|w,α,β) = p(θ, z,w|α,β)
p(w|α,β)

=
p(θ|α)

∏N
n=1 p(zn|θ)p(wn|zn,β)∫

p(θ|α)
∏N

n=1

∑
zn
p(zn|θ)p(wn|zn,β) dθ

Unfortuately, we notice that such distribution is generally intractable, due to the high-dimensional

integral at the denominator and the exponential number of available topic assignments, which

results in an extreme computational burden and forces us to switch to alternative approximation

techniques. There are several approaches for that, each offering a different trade-off between

computational efficiency and accuracy: in this section I will discuss the family of variational

inference algorithms and the Gibbs sampling approach as a MCMC counterpart. Starting from

the latter, I will delve into the methods, explore how they work, mention their advantages and

limitations, and how they can be applied to perform inference effectively.

6.1 Gibbs Sampling

The Gibbs sampling algorithm is a Markov Chain Monte Carlo method that keeps sampling each

variable conditioned on the current value of the others, gradually refining the distribution it is

meant to estimate. For this reason, it is particularly suitable in frameworks where it is possible

to leverage the conditional dependencies among the variables, such as topic models.

The algorithm first draws a random assignment of topics to words, and then it iteratively updates

the probability to observe each data point, given all the other variables, upon converging to a sta-
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ble state. This means that the conditional density of a single point xji under mixture component

zi and given the data is:

f−xji
zi

(xji) =
f((xji|φk), x−ji)

f(x−ji)

=

∫
f(xji|φk)f(x−ji|φk)g(φk) dφk∫

f(x−ji|φk)g(φk) dφk

Where the joint probability is equivalent to the product because xji are i.i.d. from F . Now, we

can use this framework to adapt the Chinese restaurant franchise and produce a Gibbs sampling

scheme for estimating posterior inference on the latent variables, namely the number of tables

and dishes, given the observed data. Exploiting the density calculated above and recalling (3),

it is possible to define the conditional distribution of both tables and dishes.

Gibbs sampling is particularly useful in the context of HDP, and an interesting feature of it is

that at some point, a table may become unpopulated: in this case, since the probability of new

customers to sit there would be null, no one else will ever eat the dish served at that table, thus

making it logic to remove the table and dish from the structure. This practice slightly simplifies

the somewhat involved bookkeeping procedure of this scheme, especially if compared to others,

as the items are first assigned to the tables and then to the mixture components. Nonetheless, the

fact the component membership of one whole table can be changed implies that the membership

of multiple data can change at the same time, thus improving its performance.

Operatively, Gibbs sampling initially randomize the topic assignment to each word, and slowly

updates it, potentially until convergence. This amounts to sample a topic assignment for a word,

given all the other parameters, which, in math, is denoted as:

p(zd,n = k|z−d,n,w,α, λ) =
p(zd,n, z−d,n|w,α, λ)
p(z−d,n|w,α, λ)

with p(zd,n = k) being the probability that the topic for word n in document d is exactly z. Then,

integrating out the topics and per-document topic proportions yields:

p(zd,n = k|z−d,n,w,α, λ) =
nd,k + αk∑K
i=1 nd,i + αi

vk,wd,n
+ λwd,n∑

i=1 vk,i + λi
(4)

where nd,k counts how many times document d uses topic k, vk,wd,n
stands for the number of

times topic k has used the word n from topic d, αk and λwd,n
are the Dirichlet parameters for the
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document-topic and topic-word distribution, respectively, and the denominators act as normal-

ization terms. Essentially, the left factor measures how much the document likes topic k and the

right one is a proxy for how much the topic likes the word wd,n.

After initial randomization, we go through each word in all the documents of the corpus, remove

the current topic assignment, and reassign it according to the above equation, that is, according

to how much the document likes the topic and how much the topic likes the word.

We can compute such probability for each of the topic, hence at the end selecting the topic to

which the word shall be assigned to is like sampling from a categorical distribution.

It is therefore possible to present an algorithm to fit an LDA model on a collection of documents

using a Gibbs sampling approach:

while not converged do
for wd,n assigned to zx do

nd,zx = nd,zx − 1
vzx,wd,n

= vzx,wd,n
− 1

set zx′ = k ∝ nd,k+αk∑K
i=1 nd,i+αi

vk,wd,n
+λwd,n∑

i=1 vk,i+λi

nd,zx′ = nd,zx′ + 1
vzx′ ,wd,n

= vzx′ ,wd,n
+ 1

In the HDP framework, the number of topics in not fixed, thus requiring relevant modification to

adapt the above sampling algorithm. Since it’s possible to either reassign a word to an existing

topic or to a new topic, the algorithm should not only consider the likelihood of associating the

word to one of the existing topics, but it should also include the possibility of creating a new

topic by incorporating the stick-breaking process.

Moreover, the hierarchical structure poses some complications in the update phase. Firstly, the

Gibbs sampler must account for the possibility of potential variations in the document-specific

distribution by updating also the global and local topic distributions. Secondly, the equations

for the topic assignments update in HDP are more complex, because the sampler also needs to

consider global topic counts and hierarchical dependencies, with the probability of assigning

a word to a topic now including terms from both the document-specific and global DP, which

require careful bookkeeping during the sampling process. With these careful considerations, it

becomes possible to adapt the algorithm presented for the LDA model to the HDP case.
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Still, there are some intrinsic limitations to the applicability of this framework, for example, a

couple of assumptions are necessary. The first relates to the base measure G0, which must be

conjugate to the distribution F : in fact, although the non-conjugate case is manageable, posing

this removes issues related to approximations and let us focus on our main objective. Also, it is

convenient to fix α0 and γ a priori: there are ways to sample them, but we do not do it for the sake

of simplicity. For these reasons, this method can be viewed as a starting point for developing

better inference procedures, such as the collapsed version.

6.1.1 Collapsed Gibbs Sampling

Collapsed Gibbs Sampling is a variant of the standard Gibbs Sampling algorithm that operates

in a collapsed space, where the model parameters are marginalized out, and the latent variables

are the only ones actually sampled.

In the standard algorithm, the scheme requires sampling the model parameters and the latent

variables at the same time, but this can lead to slow convergence, especially when the two are

strongly coupled. The issue arises because the sampling process must navigate a space where

parameters and latent variables interact in complex ways, hence marginalizing out the first would

reduce the dimensional space solely around the latent variables, which may lead to more efficient

exploration of the posterior distribution and, consequently, faster convergence.

Indeed, integrating out the model parameters brings several benefits, among which it is worth to

mention the reduced computational complexity due a lower number of parameters to compute at

each iteration. Moreover, as anticipated, the dependencies between latent variables are reduced,

thus making it easier for the algorithm to make his way through the sampling space. Overall,

collapsed Gibbs Sampling can produce more accurate estimates of the posterior distribution,

as the marginalization process averages over all possible parameter configurations, making the

posterior estimates less sensitive to the initial parameter settings and more reflective of the true

underlying structure of the data.

It is also interesting to anticipate that the improved mixing properties of a collapsed sampler

will stand as motivations behind the development of the collapsed version for the variational

inference algorithm, which we will see in the next section.
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6.2 Variational Inference

The family of variational inference algorithms transforms the problem of posterior estimation

into an optimization problem: rather than directly computing an intractable posterior, it aims to

approximate it by finding a member of a tractable family of distributions that is closest to the

true posterior, in terms of a specific divergence measure. To do so, we use a family of densities

over the latent variables, parameterized by a set of free variational parameters, and we find the

setting of the parameters that makes our distribution closest to the conditional of interest, so that

we can use it as a proxy for the exact conditional density.

First, we posit a family of approximate densities over the latent variables, then, we seek for the

member of that family that minimizes the Kullback-Leibler (KL) divergence from the exact pos-

terior, where this KL divergence quantifies the divergence between the approximate distribution

and is defined as:

KL(q(z), p(z|x)) = E [log q(z)]− E [log p(z|x)]

However, directly minimizing this KL divergence is often not feasible because the formulation

relies again on the intractable distribution over the observed variables. To avoid this, variational

inference shifts the objective of the optimization: instead of minimizing a distance, we aim to

maximize the so called evidence lower bound, a surrogate objective defined as:

ELBO(q) = Eq [log p(z, x)]− Eq [log q(z)] (5)

Which we can derive as a lower bound for log p(x) using Jensen’s inequality and rewrite as

follows:

log p(x) = log
∫
p(z, x)

q(z)
q(z)

dz

= logEq
[
p(z, x)
q(z)

]
≥ Eq

[
log

p(z, x)
q(z)

]
⇒ ELBO(q) = Eq [log p(z, x)]− Eq [log q(z)]

= Eq [log p(z)] + Eq [log p(x|z)]− Eq [log q(z)]

= Eq [log p(x|z)]− KL(q(z), p(z))
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Maximizing the ELBO brings the approximate distribution closer to the desired posterior and

enhances the model’s ability to explain the observed data. As a matter of fact, it can be rewritten

to emphasize its two components: Eq [log p(x|z)] is an expected log likelyhood that encourages

densities placing their mass on the configurations of latent variables that best explain observed

data, while (q(z), p(z)) is the KL divergence encouraging the choice of an approximate posterior

distribution that is close to the prior.

In practice, a common choice for the variational distribution q(z) is the mean-field family, where

the latent variables are assumed to be mutually independent and the joint distribution factorizes:

q(z) =
n∏
i=1

qi(zi)

Moving to our specific inference problem, it is logic to choose the following variational distri-

bution:

q(θ, z|γ,ϕ) = q(θ|γ)
n∏
i=1

q(zi|ϕi) (6)

Where q(θ|γ) is the Dirichlet over the mixture of topics and q(zi|ϕi) is the probability of topic zi.

Instead, γ andϕ are the variational parameters for the distribution governing the latent variables,

which do not include the words w, as they are the observed features.

Now that we have the variational distribution, we try to approximate the true objective function,

that is p(θ, z|w,α,β), by maximizing ELBO(q). Recalling (5) and exploiting the independence

of the latent variables in (6), we can derive:

ELBO(q) = Eq [log p(θ, z,w|α,β)]− Eq [log q(θ, z|γ,ϕ)]

= Eq [log p(θ|α)] + Eq [log p(z|θ)] + Eq [log p(w|z,β)] +

− Eq [log q(θ|γ)]− Eq [log p(z|ϕ)]

As previously anticipated, the derived posterior γ and ϕ correspond exactly to a Dirichlet and

multinomial, respectively. Because the updates for the variational parameters can be computed

in closed-form, we may write the optimization procedure with the following algorithm:

There are a couple of things to notice here. For example, proper initialization is crucial: rather

than starting with a uniform initialization of the parameters, it is fundamental not to initialize the

parameters uniformly, but to exploit some information provided by a small subset of documents

to guide the optimization in a more probably-right direction from the beginning. In terms of
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initialize ϕ0
ij = 1/k

initialize γj = αj + N/k
while not converged do

for i = 1 → n do
for j = 1 → k do

ϕt+1
ij = βjWi

exp(ψ(γtj))
normalize ϕi

γt+1 = α+
∑N

i=1ϕ
t+1
i

complexity instead, we can see that the complexity of each step is O((N+1)k), because there’s

the need to evaluate all topics for each word, plus normalization.

Once the parameters have been updated, the actual parameter estimation is performed employing

a simple expectation-maximization (EM) procedure, essential to maximize the lower bound for

the true parameters of the distribution. In the E-step, the optimal values for γ,ϕ are computed

according to the algorithm described previously, while in the M-step, the maximum likelyhood

for each document is estimated under the previously approximated variational posterior.

A relevant problem that arises in large text corpora is the sparsity of the vocabulary, which makes

it highly likely to find in the test set terms not previously encountered in the train set. This is

critical, because if the model has never learnt a specific word during training, such word will

come up in a new generated document from the model with null probability. To solve this, Blei

et al. adopt a simple smoothing technique, including a Dirichlet smoothing on the multinomial

parameter that regulates the distribution over the words.

However, making β conditioned on a new parameters implies treating it as an additional la-

tent variable to estimate using the observable data. For this reason, we can reformulate a more

complete variational posterior inference as:

q(β, θ, z|λ,γ,ϕ) =
k∏
j=1

Dir(βj|λj)
m∏
d=1

q(θd|γd)q(zd|ϕd)

Where the rightmost distribution is now explicited at a document level. This formulation requires

also a document-level distribution, leading to the optimization of the new variational parameter
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in the algorithm described previously:

λij = η+
m∑
d=1

n∑
i=1

ϕdijw
j
di

Though this adds a layer of complexity, the model is still tractable and the only two hyperpa-

rameters remain α and β. It is astonishing how, with such a slight adjustment, it is possible to

sidestep a significant problem, mitigating the issue of unseen words in new documents.

In summary, variational inference is a scalable and efficient method for approximate inference

in topic models. Given the closed-form optimization for the parameters, it converges relatively

quickly, but it can be computationally demanding compared to methods like Gibbs sampling.

Nonetheless, its ability to handle large datasets and provide good approximations makes it a

popular choice in practice.

6.3 Stochastic variational inference

Stochastic Variational Inference (SVI) is an extension to the traditional algorithm, that employs

stochastic optimization techniques to reduce computational costs and enhance the scalability:

unlike batch variational inference, which requires processing the entire dataset before updating

the global parameters, SVI does the update by sampling one document at a time.

Before diving into SVI, it is essential to make a punctualization and introduce a new concept. The

first is just a matter of terminology, namely the distinction between local and global variables in

a model. With local variables, we refer to the variables that are specific to individual documents:

they capture the latent structure that varies accross documents, that is, the topic assignments and

the document-topic distributions. The global variables are instead shared across all documents

in the corpus and capture the underlying structure that is common across the entire dataset, such

as the topic-word distribution.

For what concerns the concept to be introduced instead, it is an alternative to the well-known

gradient: the natural gradient. The gradient we are all used to is, by construction, related to the

Euclidean geometry, which does a poor job when it comes to measure the divergence between

probability distributions. For example, The distributions N (0, 10000) and N (10, 10000) are

almost indistinguishable, and the Euclidean distance between their parameter vectors is 10. In
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contrast, the distributions N (0, 0.01) and N (0.1, 0.01) barely overlap, but this is not reflected

in the Euclidean distance, which is only 0.1. To correct this, we first redefine a natural measure

of dissimilarity between probability distributions as the symmetrized KL divergence:

D(λ, λ′) = Eλ[log
q(β|λ)
q(β|λ′)

+ E′
λ[log

q(β|λ′)
q(β|λ)

]

This metric is invariant to parameter transformation, thus being dependent on the distributions

only and solving the aforementioned problem. Now, the direction of steepest ascent is exactly

the direction of the natural gradient, that is, the direction of steepest ascent in the Riemannian

space, where local distances are defined by KL divergence rather than by the L2 norm. Applying

this new framework to our old ELBO, it becomes possible to compute the natural gradient with

respect to the variational parameters.

The inefficiency of the standard variational inference algorithm lies in the update for the topic

parameter λ described in equation (1), which requires summing over all variational parameters

for every word in the collection. In this sense, a slight improvement to the algorithm is already

brought with the batch version for variational inference, where the local parameters are updated

through coodrinate ascent and the variational parameters λ requires to process all documents

before performing the update, but only a batch, i.e. a subset of documents are examined. Still,

batch variational inference is inefficient for large collection of documents: computing the local

variational parameters multiple times is wasteful, especially at the beginning of the algorithm,

when the topics have just been initialized randomly.

Once we understand how batch variational inference works, moving to stochastic variational

inference is relatively easy. As a matter of fact, the latter follows the same routine of the former,

alternating the updates of local and global parameters, but, at each iteration, a single document is

evaluated: this is why it’s called stochastic, in the same spirit of the sthocastic gradient descent,

where a single data point is evaluated before updating the parameters instead of passing through

the whole training set. This requires some adjustments in the subsequent iterations, but it is

provably faster and still consistent.

The structure of the SVI algorithm is similar to standard variational inference, but there are some

slight variation. For instance, the update for ψ is different because it is the expectation of the

mean filed variational inference with the natural gradient instead of the euclidean one. Moreover,

the computation of an intermediate lambda value is needed to bridge the gap between local and
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global variables, as in the local updates only a single document is considered, and we want to

limit stochastic updates.

initialize λ randomly
set the step size ρt appropriately
while not converged do

sample a document wd from the corpus
initialize γdj = 1 for j ∈ {1, ..., K}
while not converged do

for i ∈ {1, ..., N} do
set ψdij ∝ exp(E[log θdj] + E[βj,wdi

])

γd = α+
∑N

i=1ϕdi

for j ∈ {1, ..., K} do
set λ̂j = η +D

∑N
i=1ψdijwdi

set λt+1 = (1− ρt)λ
t + ρtλ̂

The main difference with respect to batch variational inference lies in the update of the global

variational parameter: in the first case, we must go through the whole batch before performing

the global parameter update, yielding

λ̂j = η +
D∑
d=1

N∑
i=1

ψdijwdi

whereas in the second, sampling a single document is equivalent to posing that the whole corpus

is equal to the document itself, thus making it possible to remove the sum and simply multiply

times the number of documents in the collection. Finally, notice how the ultimate update for the

lambda recalls the update of a gradient descent: this is exactly the motivation for the algorithm,

that of descending down the gradient, which in this specific case is the natural gradient.

In a very similar way, we can follow the local-global routine update in the case of HDP model,

with the global parameters now including not only the topic-word distributions, but also the

corpus-level breaking proportions.

As proven by the experiments whose results are displayed in figure 4, stochastic variational

inference provides some advantages with respect to standard variational inference. Not using

exact information, because it’s too complicated, but rather a stochastic version of it, and updating

the global parameters incrementally, reduces the need for extensive computational resources and

speeds up the training process. In the same direction, by leveraging the natural gradient and
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Figure 4: The charts show the convergence of SVI (orange) and Batch Inference algorithms
(blue) in terms of negative log perplexity over number of hours. Both with LDA (above) and
HDP (below), SVI converges faster and does a slightly better job at modeling the corpus.

stochastic updates, SVI converges more rapidly than batch variational inference, with an evident

gap especially in the early iterations. Lastly, the use of the natural gradient solves the problem

of the in-adaptability of Euclidean distance to parameter transformation and makes SVI more

robust.

6.4 Collapsed Variational Inference

Collapsed variational inference leverages the insight that a sampler operating in a collapsed

space where the parameters are marginalized out mixes better than a Gibbs sampler handling

both parameters and latent topic variables simultaneously. Similarly, this technique focuses on

directly approximating the posterior distribution of the latent variables, rather than simultane-

ously approximating parameters and latent variables.

On one hand, this suggests that parameters and latent variables are intimately coupled, but, on

the other, it is true that the dependencies between latent variables induced by marginalizing out

the parameters is expected to be small: the latent variables are assumed to be independent if

conditioned on the parameters. This suggests that the mean field, fully factorized approximation

assumptions are better satisfied in the collapsed space of latent variables than in the joint space

of latent variables and parameters.
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Figure 5: Per-word probability of standard and collapsed variational inference on the NIPS data.
In the first iterations, the two models do a similar job at modelling the corpus, but the collapsed
version outperforms the standard one in the long run.

One of the challenges of collapsed variational inference is the need to compute expectations

over the collapsed space, and this can be computationally demanding: specifically, the process

involves calculating Bernoulli averages, which are complex. However, they can be approximated

via Gaussian distribution, increasing the algorithm’s computational efficiency while preserving

its accuracy. To sum up, Collapsed Variational Inference represents a significant improvement

by operating in a space where the dependencies among latent variables are minimized. As in the

context of Gibbs sampling, the reduced dimensionality of the problem leads to faster convergence

and improved accuracy, as shown in figure 5.

28



7 APPLICATIONS

The models presented here are powerful tools for understanding and organizing large collections

of unstructured text data: they have broad applicability, especially in the context of document

modeling and classification.

Both LDA and HDP are able to model documents as mixtures of topics, where each topic is a

distribution over words. The generative nature provides a rich representation of the document

corpus, capturing the underlying thematic patterns, whereas the probabilistic nature allows learn-

ing from large corpora without prior knowledge of the document content.

In the specific context of document classification, a significant challenge is feature selection,

namely spotting the most relevant aspects of a text to accurately categorize documents. In more

traditional approaches, individual words are used as features, leading to a high-dimensional

spaces, which make the classification task computationally expensive and prone to overfitting.

Topic models offer a solution to this problem by performing dimensionality reduction: the pos-

terior distribution of the Dirichlet associated with each document, representing the document’s

mixture of topics, can be used a subset of some pre-defined factors in a feature vector. This

approach not only reduces the number of features but also captures the semantic structure of the

documents. Moreover, the classifier can leverage the thematic information coming from the fact

that documents are now represented in terms of their topic distribution, which is more robust to

noise than individual word frequencies.

However, while dimensionality reduction can lead to more efficient classification models, it also

poses the risk of sacrificing crucial pieces of information. Indeed, the topics identified are just

summaries of the document content, and important details for distinguishing between closely

related categories might be lost. Luckily, empirical evidence from various studies shows that

this does not seem threatening the model’s performance, since they still display significant im-

provements in document classification accuracy, which remains our main objective.

Talking about the HDP model specifically, it is worth to reiterate that it introduces the Dirichlet

Process to model the uncertainty related to the total number of topics, which is not fixed. The

document-specific mixing proportions requires one DP per document and HDP further tries to
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endow different DPs with some shared mixture components. Eventually, it is possible to extend

it to model multiple corpora, including an additional level of hierarchy in the Process. Now, the

first DP is accountable for the corups of corpora, the second generates the base measure for the

specific corpus and the third is responsible for the single documents: since they all come from

the same top-level DP, topics are shared not only within, but also across corpora.

7.1 Experiments

In this section it is described an experiment conducted to demonstrate the functioning of the

variational algorithm for posterior parameter estimation and the difference between the para-

metric and the non-parametric approach. Since in this thesis I’m discussing topic modeling, it

was interesting to test the two models on a corpus of documents, and see how well they perform

in recognizing topics.

For these reasons, I decideded to use a set of articles from the proceedings of the Neural Infor-

mation Processing Systems (NIPS), which I found unprocessed here. The NIPS conference deals

with a range of topics covering both human and machine intelligence, and the dataset contains

thousands of documents, which made the fitting and testing processes quite slow. However, I

chose this classic dataset due to its relevance in the context of language processing and because

it is categorized into nine major sections, suggesting that some topics could be shared across

documents.

To avoid the models recognize topics around the most frequent words, which would lead to higher

accuracy but less meaningful results, I adopted some standard preprocessing techniques in the

literature, such as tokenization and lemmatization. After that, I removed common stop-words

and discarded extremely low or extremely high importance words, appearing in less than 10%,

or more than 90%, of the documents. This step ensures that the topics caught reflect the actual

content of the documents rather than superficial word frequency patterns.

Finally, the models were evaluated through 5-fold cross-validation and the metric used was the

perplexity, defined as the exponential of the negative average log likelihood:

exp(− 1

n
p(w|corpus)) (7)

with n being the total number of words. The likelihood of a word is computed as the sum of its
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Figure 6: Comparison of LDA and HDP perplexities over the train corpus. While different LDA
models are needed to test different number of topics, a single HDP is trained.

Figure 7: Number of topics inferred over the train corpus sampled by the posterior distribution
fit with the HDP model.
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probability to appear in any topic, discounted by the mixture value of that topic to actually be a

theme in the document, and the total likelihood of the document is the summed likelihood of all

words.

The two models were kept as similar as possible, using symmetric Dirichlet distributions for both

the topics-per-document and words-per-topic priors, same chunk size and maximum number of

iterations. I used the Gensim library, which is an easy-to-use open-source tool implementing

main models and other useful functions in the preprocessing steps. The implementations are

directly based on the papers that first demonstrated the use of variational inference for online

learning in the context of LDA and HDP, respectively.

The results of the experiment are shown in Figures 2 and 3: the perplexity for multiple LDA

models, with the number of topics varying from 20 to 160, was evaluated and compared with

that from a single HDP model. Interestingly, while the best LDA models slightly outperformed

the HDP model in terms of perplexity, the trade-off favored HDP in terms of time spent on

parameter tuning. Unlike LDA, which requires careful tuning of the number of topics, HDP

automatically infers the number of topics from the data, making it more convenient in practical

applications.

It is worth to mention that, on average, the number of topics sampled by the HDP was slightly

higher than the optimal number of topics for the LDA model, signaling a slight difference be-

tween the two models. Moreover, notice how LDA is extremely poor at modeling the corpus

when trained with a largely incorrect number of topics, highlighting once again the remarkable

gap between the two models in terms of flexibility.

The objective of this analysis, inspired from the one conducted by Teh et al. in their paper, was to

compare the performance of one the algorithms presented in this thesis on two prominent models

for topic modeling. Future work could include the exploration of other inference algorithms,

such as Gibbs Sampling or variations on the VB theme.

32



8 DISCUSSION

8.1 Models

It should be clear at this point that the models described here represent important advancements

in the field of topic modeling, but it is also necessary to consider their difference and limitations,

which make them not optimal, or at least improvable in some aspects.

Latent Dirichlet Allocation is a generative probabilistic model that is widely used due to its

simplicity, ease of implementation, and well-established inference techniques. One of the main

strengths of LDA is its ability to produce interpretable topics, useful in various domains, but its

requirement to pre-specify the number of topics can sometimes be problematic. LDA struggles

when the number of topics is relatively low or extremely large, i.e. with an excessively small

or large corpus. On one side, it may lack some information to infer the underlying topics accu-

rately, while, on the other, processing large corpora can be computationally expensive, especially

when dealing with a vast number of documents and a large vocabulary. Moreover, it relies on

the bag of words assumption and disregarding the word order within the document may prevent

capturing the semantic relationships between words either in a single sentence or in the whole

document.

One of the improvements HDP offers is that it solves the problem related to the fixed number of

topics, but this higher degree of flexibility comes with different prior distributions and additional

layers in the model, thus making it computationally expensive and slower, especially for larger

datasets. On top of that, this method relies on specific hyperparameters, like the concentration

for the Dirichlet Process. These can significantly influence the performance of the model, and

selecting appropriate values requires either knowledge or experimentation, which opposes the

need to limit the number of trials given the complexity of the calculations.

Finally, an issue concerning both approaches is that of the interpretability of topics. In fact, the

models return a set of topics and a list of words per topic, but the job of inferring a name for the

topic is up to the developer and it may not always be straightforward, especially as the number

of potential topics grows.
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In summary, LDA is a powerful tool when the number of topics is known and remains consistent

across the dataset: it is easier to implement and interpret, making it suitable for a wide range of

applications where computational efficiency and interpretability are key bindings. HDP instead

offers a more flexible and adaptive approach, automatically inferring the number of topics, which

is particularly useful for complex and large-scale datasets. However, this flexibility costs in

increased computational complexity and potentially challenging model interpretation.

8.2 Inference algorithms

Each of the algorithms discussed in the inference section offer distinct advantages and trade-offs

depending on the specific application and requirements of the model.

Starting from the Gibbs Sampling scheme, it is a straightforward MCMC method with notable

simplicity and ease of implementation. However, it often suffers from slow convergence, espe-

cially in high-dimensional spaces or when dealing with highly correlated variables. Moreover, it

can be computationally expensive, as it typically requires a large number of iterations to achieve

accurate results. In this sense, the collapsed version reduces the problem dimensionality, leading

to faster convergence and better mixing properties, with more accurate approximations.

Still, the implementation is somewhat more complex due to the need to derive and compute the

marginalized distributions, and the fact that not all models or variables can be easily collapsed

limits the applicability of this method.

In contrast, Variational inference is a deterministic approach known for its scalability and speed,

making it particularly suitable for large datasets. However, the quality of the approximation

strongly depends on the chosen variational family, which might not always capture the true pos-

terior accurately, particularly in complex models, where it may be trapped in local minima.

Stochastic VI builds on the standard version, incorporating stochastic optimization techniques

that allows to reduce computational burden and scale up to large datasets, also enabling online

learning, where the model is updated as new data arrives. Although it introduces significant

computational advantages, it inherits some limitations, including the sensitivity to the choice of

variational family and potential issues with local minima. Moreover, the stochastic nature of the

algorithm introduces variance in the estimates.
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Collapsed Variational Inference finally combines the strengths of VI and collapsed Gibbs sam-

pling, with the marginalization yielding simpler optimization and faster convergence. However,

it inherits the complications of the collapsed Gibbs sampling, such as a complex implementation

requiring the derivation of collapsed variational objectives and an extra computational overhead

due to the collapsing step. Again, its applicability is limited by the feasibility of collapsing vari-

ables in the given model.

In summary, the choice of the inference algorithm should be guided by the application needs,

including size of the dataset, model complexity, and balance between approximation accuracy

and computational efficiency. On one hand, Gibbs Sampling offers flexibility and accuracy but

may be computationally prohibitive for large or complex models. On the other hand, VI provides

scalability and speed, making them suitable for large-scale applications, although they might

compromise on the precision of the posterior approximation. Collapsed VI offers a potential

middle ground, improving in accuracy at the cost of increased implementation complexity.
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