

Acknowledgments

First of all, I would like to take this opportunity to sincerely thank my thesis supervisor,

Professor Daniele Tonini, for his guidance throughout the realization of this work, his

availability and his precious advice. I began working on this thesis during my exchange

semester at Georgia Tech, Atlanta, which coincided with one of the most challenging yet

transformative periods in my life. I feel blessed to have met the greatest people along this

journey, especially Cristiana, my roommate, Pierluigi and Francesco, thanks for making

this experience truly unforgettable.

I would like to take a moment to express my heartfelt gratitude to my relatives,

particularly my mom, dad, and grandparents, for their support and pride in me from

the very beginning, regardless of any circumstances.

To Tommaso, my safe place and my best friend, thanks for reminding me every day what

I am fighting for.

1

Contents

Introduction 6

1 Literature Review 10

2 Basic Concepts of Time Series 14

2.1 Time Series definition and Properties . 14

2.2 Why do we need time series? . 16

2.3 Time Series Components . 16

2.4 Correlation and Autocorrelation . 17

3 Classical Approach 19

3.1 AR(p) . 19

3.2 MA(q) . 20

3.3 ARMA(p,q) . 20

3.4 ARIMA(p,d,q) . 21

3.5 SARIMA(p,d,q)(P,D,Q,s) . 21

3.6 Box-Jenkins Methodology . 22

4 Deep Learning Approach 24

4.1 The Artificial Neuron . 24

4.2 The Perceptron . 25

4.3 Recurrent Neural Networks . 27

4.4 Long-Short Term Memory . 29

4.5 Gated Recurrent Unit . 31

2

4.6 Transformer and Attention Mechanism . 32

5 Metrics of Evaluation 35

5.1 Mean Absolute Error (MSE) . 35

5.2 Mean Squared Error (MAE) . 36

5.3 Akaike Information Criterion (AIC) . 36

6 Data Collection 38

6.1 Nasdaq-100 . 39

6.2 AAPL . 40

6.3 WTI Crude Oil . 40

7 Modeling and Results 41

7.1 A premise . 41

7.2 Data preprocessing . 44

7.3 Rolling window approach . 44

7.4 ARMA implementation . 45

7.5 LSTM implementation . 47

7.6 FB Prophet . 50

8 Conclusion 52

Bibliography 54

Appendix A 62

Appendix B 65

3

List of Figures

1 Hype Cycle of a generic technology . 8

2 Box-Jenkins methodology . 22

3 Schematic drawing of a biological neuron 24

4 Perceptron learning process . 26

5 Computational graph of RNN . 28

6 Structure of a LSTM unit . 30

7 Transformer model architecture . 33

8 Nasdaq-100 index composition . 39

9 Simple returns vs. Logarithmic returns . 43

10 ARMA predictions vs.True data . 46

11 LSTM predictions on Nasdaq-100 data . 49

12 LSTM predictions on AAPL data . 49

13 LSTM predictions on WTI data . 49

14 Analyst-in-the-Loop modeling . 51

15 Nasdaq-100 logarithmic returns . 60

16 Price history and logarithmic returns for AAPL dataset 61

17 Price history and logarithmic returns for WTI Crude Oil dataset 62

18 Prophet predictions on AAPL data. 64

19 Prophet predictions on WTI Crude oil data. 64

4

List of Tables

1 Datasets overview . 38

2 Summary of the windows lengths . 45

3 ARMA model results . 46

4 GridSearch CV optimal parameters . 48

5 Long-Short Term Memory model results 48

6 Train-Test sets shape . 63

7 Results of Prophet implementation using Adj Close price 64

8 Results of Prophet implementation using Log returns 64

5

Introduction

Over the last few decades, Time Series Forecasting has gained significant attention

across various disciplines, representing a dynamic and continually evolving research area.

Particularly in the field of finance, stock prediction has held a prominent position for

quite some time. Despite the wide array of mathematical tools available, making accurate

predictions remains a challenging task, mainly because of the inherent nature of the stock

market, whose movements are noisy, impacted by macroeconomic trends and more often

than not, irrational. Volatility itself represents one of the biggest issues: while it can

create profitable scenarios, it can also increase the opportunity of incurring in a loss. In

financial economics, the Efficient-Market Hypothesis (EMH), first formalized by Eugene

Fama in 1970 [1], stands as a fundamental proposition. According to the EMH, stock

markets are deemed efficient, signifying their ability to promptly and accurately reflect

all available information. Consequently, the hypothesis suggests that it is impossible to

consistently outperform the market without accepting increased investment risk. In other

words, there is no ”money machine” that generates wealth for nothing: if the price of an

asset is right, there is no arbitrage opportunities.

EMH implies that if new information arrives randomly in an efficient market, changes in

prices caused by such information are random as well. Thus, the price is said to follow a

random walk [2] 1:

pt+1 = pt + ϵt+1

where ϵt+1 ∼ WN(0, σ2) . The shock is determined by the white noise, which is

1The term was first coined by a French broker, Jules Regnault, who published a book in 1863, and
then by a French mathematician Louis Bachelier, in his dissertation titled ”The Theory of Speculation”
(1900).

6

unpredictable, namely the best forecast of tomorrow’s price is today’s price. Therefore,

any change in market price will be accounted for by new information that arrives in a

time interval. Even if there is some evidence in favour of EMH, this latter has faced

considerable debate and challenges over time, no longer holding the status of indisputable

truth. Influential figures like Warren Buffet have also expressed their hesitation towards

the hypothesis. Furthermore, the empirical study conducted by Dremen and Berrys [3]

presented evidence rejecting at least the strong market efficiency variant of the EMH,

claiming that security prices reflect instantly all available information, public or private.

Their research revealed that the market tends to overreact to low price-to-earnings (P/E)

ratios in the long term, indicating a deviation from the notion of market efficiency.

Moreover, esteemed professors Andrew Lo and Craig MacKinlay in ”A Non-Random

Walk Down Wall Street” [4] provided a witty perspective on Burton Malkiel’s renowned

book [5], showing that the stock market is somehow predictable.

When it comes to market forecasting, there are two primary schools of thought that hold

diverging opinions and methodologies. Fundamental analysis evaluates the value of a

company by taking into account both qualitative and quantitative factors within a general

framework, and decisions are driven by a simple comparison between the estimated and

the real value of the company. Technical analysis instead avoids subjectivity and focuses

on trends and recurring patterns by looking at past prices [6], thus being closer to time

series forecasting.

With the advent of Artificial Intelligence and its several branches, a third and more recent

school of thought has gained prominence in the field of market forecasting. This approach

leverages machine learning models as a powerful tool for predicting future market trends.

It is essential to recognize the impact of Machine Learning by examining how businesses

and financial institutions have embraced these advancements.

In today’s landscape, organizations rely on Machine Learning techniques to enhance

their decision-making processes and strategically plan for the future. These latter offer

valuable insights and enable proactive development strategies. Notably, one of the most

significant breakthroughs in the financial sector is algorithmic trading, also known as

7

automated trading or black-box trading, which has revolutionized the approach to stock

prediction. Algorithmic trading serves as the cutting edge of innovation in this domain,

providing new avenues for optimizing trading strategies and leveraging the power of

machine learning to navigate the complexities of the market. These algorithms possess

the capability to process and analyze vast volumes of historical and real-time market

data, enabling them to detect valuable patterns, trends, and anomalies that can drive

profitable trading opportunities. Machine learning models, in particular, have gathered

significant attention due to their adaptive nature: the critical importance of accurate

predictions becomes apparent considering the substantial sums of money at stake within

milliseconds of trading. However, despite the noticeable results achieved by machine

learning in financial forecasting, some companies may exhibit hesitancy in embracing

these techniques for various reasons. Firstly, there may exist a lack of understanding or

awareness regarding the potential benefits that machine learning can offer. This often

leads to scepticism and reluctance, as companies may be uncertain about the return on

investment or the feasibility of implementing such complex systems. Furthermore, the

integration of machine learning into an organization necessitates substantial changes to

existing processes, infrastructure, and a skilled workforce. Historically, many disruptive

technologies have faced slow adoption in industries. As clearly outlined in the Hype Cycle

(Figure 1), developed by Gartner Inc., after an initial period of inflated expectations,

disillusionment often sets in, sometimes impeding the smooth integration of such

technologies.

Figure 1: Hype Cycle of a generic technology. Source: [7]

8

Reaching the plateau of productivity is not an easy task, since each innovation brings a

certain degree of risk in the picture. In summary, the decision to incorporate machine

learning is a complex one that requires a careful evaluation of potential downsides and

rewards, as well as the company’s ability to embrace technological innovation. AI-driven

technologies are gradually revolutionizing various fields, although their full potential is

yet to be fully realized.

Despite all these rapid changes, this thesis focuses on univariate time series forecasting

and explores the extent to which markets can be forecasted. After a brief literature

review in Chapter 1, some background knowledge is given about time series, classical

models and deep learning techniques in Chapters 2, 3, 4 respectively. Then, in Chapter 6,

the datasets chosen for this analysis are presented. This study seeks to develop different

architectures, a classical Auto Regressive Moving Average method (ARMA) together

with a Deep Learning model, Long-Short Term Memory (LSTM) model, on logarithmic

returns, in order to play with different granularities. The aim is to discover strengths and

pitfalls of these models: choosing the most suitable is a trade-off between performance

and complexity while adhering to the parsimony principle 2 [8]. In addition to those

aforementioned, Prophet library is also included in this work and all the results are

displayed in Appendix B.

2In economics, the principle is also known as Occam’s Razor and states that a simpler model with
fewer parameters has to be preferred over more complex models with more parameters. The optimal
model always involves striking a balance between the goodness of fit of the model and the number of
regressors included.

9

https://proceedings.neurips.cc/paper_files/paper/2000/file/0950ca92a4dcf426067cfd2246bb5ff3-Paper.pdf

Chapter 1

Literature Review

Forecasting is an ancient problem dating back thousands of years ago, sometimes

associated with magical power or inspiration from gods, while sometimes with suspicious

activities. Despite its connotation, the ability to foresee the future has always been

intriguing to humans for a plethora of activities, ranging from medicine to weather,

scheduling problems, economics and finance. In some situations, when there is a lack of

historical data, or data is not yet available, the only possibility is judgemental forecasting

[9], though it turns out to be highly subjective and the forecaster has to prove sufficient

knowledge in a certain domain. Instead, when data is at hand, quantitative forecasting

methods can be resorted. The field of time series forecasting has been a promising research

area starting from the early 1980s when the Journal of Forecasting and the International

Journal of Forecasting were founded. To give a rough estimate, since then, more than 940

papers about forecasting models were published, most of which have been summarized

by authors De Gooijer and Hyndman [10] for the 25th-anniversary occasion, in 2005.

However, without a universal consensus on the performance metric to use in evaluating

them, establishing a ranking for the most suitable econometric model to apply is almost an

impossible task. As a general guideline, Box and Jenkins [11] came up with a three-stage

model to develop an ARMA or ARIMA model that best fits the time series data. ARIMA

model stands for Auto-Regressive Integrated Moving Average model, as it includes both

an Auto-Regressive component and a Moving Average component with differencing. The

main benefit of using the ARIMA model is to transform a non-stationary series into a

10

series without seasonality or trend by applying finite differencing of data points, one

or even more times. However, many researchers and statisticians have looked into the

limitations of Moving Average models like ARIMA and SARIMA models. The major

drawback is that they are regression-based approaches, therefore they are not able to

tackle non-linear relationships between parameters. In addition, to have a meaningful

insight, certain assumptions about the data must hold, for instance, a constant standard

deviation in error terms. Since the advent of Artificial Neural Networks, which will be

explored in more detail in the next chapters, the stock prediction problem has gained

even more popularity over the last thirty years [12]. The vast majority of the work is

about exploring more complex models, such as Convolutional Neural Networks (CNNs),

Long-Short Term Memory (LSTM) and Recurrent Neural Networks (RNN). A remarkable

advantage of these latter is their capability to handle a massive amount of data, with a

faster pre-processing phase and no particular assumption behind it. Wamkaya et al. [13]

carried out some experiments on three NYSE stocks using ANNs. Subsequently, several

other works can be cited regarding the study of CNNs, which achieved good performance

results, more specifically S. Chen et al. [14] who proposed the use of CNNs to predict

Chinese stock market movements, or M. Hiransha et. al [15] who showed how NNs of

different kinds outperformed ARIMA models on the National Stock Exchange of India

and NYSE. In a comparative study on minute-wise stock price data by Gopalakrishnan et

al. (2017) [16], the LSTM model outperformed a vanilla RNN, which again outperformed

simpler linear models. Another fundamental and rigorous paper on six stock indices

by J. Yue et al. (2017) [17] reached the same conclusion about LSTMs. In line with

the aim of this thesis, it is worth mentioning that there is a prominent interest in testing

simpler models against state-of-the-art DNN models. In particular, in ”Do We Need Deep

Learning Models for Time Series Forecasting?” by S. Elsayed et al. [18], nine datasets are

examined along with eight different DDN models presented at top-level conferences. The

results indeed show that a well-engineered Gradient Boosting Regression Tree (GBRT)

can compete or even outperform such complex architectures, therefore suggesting not to

disregard baseline models. Given the sequential nature of financial data, Transformer

11

based architectures are picking up pace as well. One of the very first applications

aimed at forecasting S&P500 volatility [19]. With the increased computational power

and advancements in the field of Artificial Intelligence and its branches, forecasting is

no longer limited to past observations only. Natural Language Processing (NLP) is

growing rapidly too, thanks to its versatile applicability in several fields, some of which

are text summarization, sentiment analysis and text generation. The large amount of

data that constantly floods our world can be exploited for many analyses to improve

predictions. This is the reason why many researchers are trying to come up with and

experiment with hybrid models or combine them to gain a complete understanding of the

problem. For instance, Ding et al. (2015) [20] proposed a news-based stock prediction

framework that uses a deep learning-based sentiment analysis model to extract sentiment

information from news articles, and combine it with historical stock prices to make future

predictions. The incorporation of textual data significantly improves forecasting accuracy

compared to using only financial indicators. Transfer Learning is gaining ground among

NLP practitioners, not only for text-related tasks but also for Time Series Classification

(TSC) as proposed by H.I. Fawaz et al. in ”Self- and Transfer-Learning for Time Series

Forecasting with Deep Neural Network” (2018) [21].

The main idea behind transfer learning is to leverage the power of pre-trained Deep

Neural Networks, in this case, Convolutional Neural Networks, and then transfer the

learned weights to a second model, avoiding implementing it from scratch. In such a

way, the network has to be fine-tuned on a different dataset, but exploiting what has

previously been learnt. While for image and audio data such a method works well, TSC

is quite a relatively new area and limited progress has been made so far. One of the

main limitations is that time series data is very domain-specific, compared to sequential

NLP data, as T. Zhou et al. pointed out in his paper ”Power Time Series Forecasting by

Pretrained LM” [22]. In this latter, cross-domain knowledge is investigated as known to be

one of the most challenging tasks, with a particular focus on GPT-2 (Radford et al., 2019)

[23], BERT [24] and BEiT [25]. A Frozen Pre-trained Transformer (FPT) is employed,

which consists of using a pre-trained Transformer model on image data and then using it

12

without altering the feed-forward and self-attention layers of the residual block. Overall,

the application of such techniques to time series forecasting is a promising field of research,

nevertheless, both DL and NLP models often face the problem of limited or insufficient

training samples, in contrast to classical econometrics models, which are more robust even

working with smaller datasets. Moreover, a relevant issue remains the interpretability

and the architecture of the model, this is why we often speak of black-box models. In

light of this remark, the Temporal Fusion Transformer model (TFT), which leverages

the self-attention mechanism to capture the dynamics of multiple time sequences, seems

to be a reasonable proxy. In ”Temporal Fusion Transformers for Interpretable Multi-

horizon Time Series Forecasting” by B. Lim et al. (2019) [26], an alternative to a classical

Transformer model is presented, with the ability to capture both temporal and cross-

sectional dependencies in the time series data. The self-attention layers are responsible

for detecting long-term dependencies, whereas recurrent layers are for local processing.

TFT allows programmers to understand how each input feature contributes to the forecast,

therefore revealing what is under the hood. Though, the use of dilated convolutions and

cross-sectional attention mechanisms, together with several stacked layers, makes this

model computationally expensive compared to simpler statistical models. Starting from

the basic structure of a Transformer, as designed by Vaswani et al. in 2017 [27], another

extension is under the attention of scientists, namely the Transformer-XL model [28]. The

purpose is to address the problem of context fragmentation with the use of a segment-

level recurrence mechanism and a sinusoidal positional encoding scheme. Transformer-

XL [29] can learn dependency that is 80% longer than RNNs, 450% longer than vanilla

Transformers and it is faster in the valuation phase, in addition, it has no restriction of

the input size length.

This literature review is supposed to be a concise summary of the current landscape,

however, it is far from being exhaustive due to the continuous proliferation of articles

and news. Ultimately, there is still much room for improvement: further investigation is

needed to explore the effectiveness of such techniques for time series data and to develop

ready-to-use models.

13

Chapter 2

Basic Concepts of Time Series

2.1 Time Series definition and Properties

A time series can be defined as a collection of sequential data points, where a specific

metric, for a singular entity, is measured at periodic time intervals. Depending on the

frequency of data acquisition, time intervals can range from yearly to monthly, weekly,

daily, hourly, or even seconds. Essentially, a time series offers a temporal perspective

on a particular variable, providing insights into how it has evolved over time. As such,

given the abundance of this type of data, especially in the Big Data era, the need for

a systematic forecasting approach is critical. Time series analysis is widely employed

in various domains, in particular, to detect patterns, forecast future trends, and make

well-informed decisions. In the field of time series analysis, a sequence of data points

that describes a solitary variable is referred to as a univariate time series. Conversely, if

multiple variables are observed at the same time intervals, the resultant data sequence

is classified as a multivariate time series. A general notation to describe a discrete time

series stochastic process is :

{Y1, Y2, . . . , Yt} = {Yt}∞t=1

namely, a sequence of random variables indexed by time t, defined on a common

probability space. In modelling time series data, the ordering imposed by the time index

14

is fundamental because we are often interested in capturing the temporal relationships, if

any, between the random variables in the stochastic process. A realization of the process

with T observations is denoted as:

{Y1 = y1, Y2 = y2, . . . , Yt = yt} = {Yt}Tt=1

Strictly related to the notion of stochastic process, we must introduce the concept of

stationarity, which is nothing but a form of ’equilibrium’. Time series stationarity refers

to the property of a time series for which the statistical properties such as mean, variance,

and autocorrelation remain constant over time. Formally, weakly stationarity implies that:

E[yt] = E[xt−h] = µ ∀h

V ar[yt] = V ar[yt−h] = σ2 ∀h

Cov[yt, yt+h] = γh

where γh exists and is finite. In other words, the process has the same mean and variance

at all time points, whereas the covariance does not depend on the location of the points

along the time axis. Particularly, a stochastic process is said to be strictly stationary if

the joint probability distribution function of the observations is independent of the time

t for any lag.

Stationarity is an important assumption in many time series models and techniques,

furthermore, violations of stationarity can lead to inaccurate results, this is why checking

for stationarity is always important. In practice, data showing a crystal clear trend or

seasonal patterns are non-stationary by nature. In such cases, some techniques such as

differencing and log transformations are resorted to make the series stationarity.

The Augmented Dickey-Fuller (ADF) test, also known as the Unit Root test, serves as

a confirmatory method for determining whether a time series is stationary or not. In

probability theory and statistics, a unit root is a characteristic of certain stochastic

processes, which can cause issues in statistical inference involving time series models.

15

The test is conducted with the following assumptions:

• Null Hypothesis (H0): series is non-stationary or series has a unit root;

• Alternate Hypothesis (H1): series is stationary or series has no unit root.

If the null hypothesis fails to be rejected, the test provides evidence that the series is

non-stationary. Rather than manually performing the ADF test, programming languages

like R and Python offer useful packages for data analysis. The resulting output includes

the p-value, the test statistic value, the number of lags considered in the test, and the

critical value cut-offs. Conventional statistical rules are used to determine whether to

reject the null hypothesis in favour of the alternative.

2.2 Why do we need time series?

Following this brief introduction, one may reasonably question the necessity of conducting

time series analysis. However, in today’s world, statisticians and researchers are pretty

much occupied with analyzing the patterns behind data. In fact, it is risky to overlook

such data because it frequently has substantial value, signifying a strong competitive

advantage over rivals. The first reason for inspecting time series is that they can help

us to predict future trends and behavior based on historical data, as well as to track

performance over time. Additionally, scrutinizing this form of data can prove useful in

identifying anomalies or unusual occurrences that need further exploration. Lastly, time

series data can be used in many fields to evaluate the efficacy of interventions or decisions

made over a given period.

2.3 Time Series Components

Time Series are mainly analyzed using statistical tools. Once the data has been collected,

the initial step involves carrying out an exploratory analysis to gain deeper insights of its

characteristics. A time series is supposed to be affected by four main components:

16

1. Tt - which is the trend component at time t and reflects the progression of the

series. A trend is spotted whenever there is a persistent increasing, decreasing or

flat direction in the data;

2. Ct - which is the cyclical component at time t, referring to the irregular, non-

repeating fluctuations in a time series that occur over long periods;

3. St - which is the seasonal component at time t, suggesting that the data is influenced

by seasonal factors. Seasonality occurs over a fixed and known period (e.g.,

the quarter of the year, the month, or day of the week) and can be caused by

extraordinary circumstances (e.g. level of sales during Christmas time);

4. ϵt - also called ”noise” or residual at time t, which reflects random influences in the

model.

Considering the overall effect of these aforementioned components, two types of models

are generally used for time series decomposition:

• y(t) = Tt + Ct + St + ϵt (Additive model)

• y(t) = Tt ∗ Ct ∗ St ∗ ϵt (Multiplicative model)

When selecting the best approach to use, it is important to consider that the additive

model is appropriate when the seasonal variation remains constant over time and the

components are independent of each other, whereas the multiplicative model is more

suitable when the seasonal variation increases over time and the components can affect

one another.

2.4 Correlation and Autocorrelation

When working with time series data, it is important to understand clearly two additional

concepts: correlation and autocorrelation. Correlation refers to the measure of how two

time series variables vary in relation to each other. The Pearson correlation coefficient

denoted as ρ, is always a number between -1 and 1. More specifically, when ρ = 1, the two

17

series have a perfect linear relationship with no deviations, therefore they move together,

conversely, if ρ = −1, they vary in opposite directions, but still with a linear relationship.

A low value of correlation is synonymous of a weak association.

Instead, autocorrelation, also known as serial correlation refers to the degree of correlation

of a single time series with its past values. More often than not, when speaking of

autocorrelation we mean a ’lag-one’ auto correlation, namely we consider only one day

lags. Similarly to correlation, auto correlation can ranges between -1 and 1, therefore

it can be either positive or negative. Positive autocorrelation means that the increase

observed in a time step leads to a proportionate increase in the lagged time interval. Such

observations can be plotted in a smooth curve and, by exploiting a regression line, we

observe that a positive error is followed by another positive error and vice versa if it is

negative. On the other hand, negative auto correlation implies that an increase observed

in a time interval step lead to a proportionate decrease in the lagged time interval. In

this scenario a positive error will be followed by a negative one and vice versa and no

smooth curve can be fitted, the residuals are scattered. Auto correlation plot can be

easily obtained using the corresponding command in Python, moreover if the time series

is stationary, the plot will drop to zero relatively quickly, whereas with white-noise data

(non-stationary) it will decrease slowly. In order to test for autocorrelation, the Durbin-

Watson statistic is generally resorted. Under the null hypothesis, the errors of the least

squares regression are serially uncorrelated, whereas the alternative states that they follow

a first order auto-regressive process. The test statistic can be computed as follows:

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

where T is the number of observations and et is the residual obtained as et = ρet−1 + νt.

The value of DW always lies between 0 and 4, moreover if T is large, the test statistic

can be approximated as DW = 2(1 − ρ̂), where ρ̂ is the sample autocorrelation. At the

threshold value DW = 2, meaning that the autocorrelation is zero, instead if DW < 2

the autocorrelation is said to be positive, negative if DW > 2.

18

Chapter 3

Classical Approach

3.1 AR(p)

The Auto-Regressive model 1 is a simple, yet powerful, approach to analyzing time series

data. Its underlying principle is to exploit past observations of the phenomenon to predict

its future values, assuming the data to be stationary. This family of models is essentially a

linear regression model where each regressor is a past observation, with its corresponding

weight. The variable ”p” in AR(p) represents the number of past values or lags included

in the regression.

Mathematically, it can be expressed as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt = c+

p∑
k=1

ϕkyt−k + ϵt

where yt is the future value of the time series, c is the intercept, ϕk the single weight

and ϵt is the error term at each time step. To estimate the set of weights, the method

of maximum likelihood estimation is often adopted. The model can be evaluated by

analyzing the residuals to ensure that they are uncorrelated and have constant variance.

1The term ”auto-regressive” is self-explanatory, the model is regressing the variable of interest against
its past values.

19

3.2 MA(q)

The Moving-Average method is another popular model used for estimates. Unlike the AR

method, that uses past values of the response variable, the MA model utilizes the past

forecast errors or residuals to predict future values. The MA(q) model assumes that the

current value of y depends linearly on the q most recent forecast errors, with a constant

mean and variance. The q denotes the order of the MA model, which refers to the number

of lagged forecast errors used in the model. Mathematically, it can be expressed as:

yt = c+ θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q + ϵt = c+

q∑
k=1

θkϵt−k + ϵt

where, again, yt is the future value of the time series, c is the intercept, θk the single

weight and ϵt is the error term at each time step. The error terms, used as predictors,

are also called random shocks and they are assumed to be uncorrelated and to follow a

gaussian distribution, with zero mean and constant variance. The Moving Average (MA)

model is highly effective in capturing short-term variations, such as sudden shocks or

seasonal patterns, in time series data. However, it may not be the most suitable approach

for modeling long-term trends, since it relies solely on past forecast errors, rather than

the actual time series values.

3.3 ARMA(p,q)

The ARMA(p,q) model is obtained by combining the two models just described above,

in fact, is can be written as their simple sum:

yt = c+

p∑
i=1

ϕiyt−i +

q∑
i=1

θiϵt−i + ϵt

However, a major flaw of this model is its assumption of stationarity in the time series

being analyzed, which is frequently not valid in real-world settings. As a result, it is

fundamental to ensure the presence of this property. The ARIMA model offers a more

20

resilient extension of the ARMA model, specifically designed to handle non-stationary

time series by utilizing differencing operations.

One technique for promptly identifying stationarity in the data is to examine its

decomposition. However, relying solely on graphical analysis can be misleading, therefore,

statistical tests are commonly employed for this purpose.

3.4 ARIMA(p,d,q)

ARIMA is an acronym for Auto-Regressive Integrated Moving Average model, which is

widely used in statistics and econometrics. It is a generalization of the Auto-Regressive

Moving Average (ARMA) model, designed to overcome the limitation that ARMA is only

suitable for stationary time series data, by incorporating differencing into the model.

The non-seasonal ARIMA(p,d,q) model is made of the following components:

• Auto-regressive (AR) - a model that employs a variable to regress on its own lagged

values. The number of lagged observations, namely the lag order, is denoted as p;

• Integrated (I) - it refers to the degree of differencing applied to the raw data to

render the time series stationary. This component is also known as the degree of

differencing and is represented by d;

• Moving Average (MA) - a model that employs a variable to regress on residual

errors. The order of the moving average is denoted as q.

Since ARIMA incorporates differencing in its model building process, it does not strictly

require the empirical data to be stationary. To ensure that ARIMA model works well, the

appropriate degree of differencing should be selected, so that time series is transformed

to stationary data after being de-trended.

3.5 SARIMA(p,d,q)(P,D,Q,s)

The SARIMA (Seasonal Auto-Regressive Integrated Moving Average) model is an

extension of the ARIMA model that incorporates the seasonality component into the

21

forecasting process. In this case, the model is characterized by four parameters, (p,d,q)

for the non-seasonal part and (P,D,Q,s) for the seasonal part. The true novelty is the

introduction of the last parameter s, which specify the seasonal length of the data. With

its ability to capture both short-term and long-term dependencies, this model provides a

flexible but robust framework for forecasting time series data.

3.6 Box-Jenkins Methodology

After a brief overview of the various models, we have to address the concern of how picking

up the most appropriate and how to set its order. As anticipated, George Box and Gwilym

Jenkins developed a practical method to build the ARIMA model, which best fits the data

and satisfies, at the same time, the principle of parsimony. This methodology consists of

three steps: model identification, parameter estimation and diagnostic checks.

Figure 2: Box-Jenkins methodology. Source: [30]

More in detail, for the first step, it is necessary to check for stationarity of the data by

plotting the raw data to get a general idea. There are several tools used for this scope,

in particular the autocorrelation function, the ACF plot and the Augmented Dickey-

Fuller (ADF) test. If the data appears to be non-stationary, transformations of the data

will be carried out. In most cases, first-order differencing is enough to proceed with

an ARIMA model. Then with a trial-and-error approach, the best values for p and q

22

are determined, using some metrics such as the Akaike-Information-Criterion (AIC) and

Bayesian Information Criterion (BIC). Lastly, it is a good practice to run some diagnostic

checks on the calculated residuals. The model can be considered reliable if the residuals

are independent of each other, with constant mean and variance over time, namely, they

are white noise or i.i.d.. Moreover, one can take a closer look at the ACF plot of the

residuals or interpret the Jarque-Bera (JB) statistic for the normality test. This procedure

is iterated several times (Figure 2) if the best model is not immediately identified.

23

Chapter 4

Deep Learning Approach

This section provides some introductory information about deep learning history and

models, particularly in the context of time series forecasting.

4.1 The Artificial Neuron

Artificial Neural Networks (ANNs) are considered as the building blocks of several

architectures in deep learning. As their name suggests, the origin can be traced back to

1943, when Warren McCulloch, a neuroscientist, and Walter Pitts, a logician, published

in ”A logical calculus of the ideas immanent in nervous activity” [31] the Threshold

Logic Unit (TLU), the very first artificial neuron [32], that mimics the functionality the

biological counterpart. A simplified version of a biological neuron can be visualized in

Figure 3.

Figure 3: Schematic drawing of a biological neuron. Source: [33]

Essentially, electrical signals travel towards the neuron cell body across several dendrites.

24

Inside the body, the signals are added together and compared to a threshold value. If

the resulting signal is greater than the threshold, the neuron is considered to be firing

and a new signal is propagated through the neuron’s axon. Conversely, if the signal does

not reach the threshold, the neuron remains inactive, as the neuron’s activity follows an

all-or-none principle. Large neural networks can be easily built by tying together several

neurons via dendrites and axons.

4.2 The Perceptron

The Perceptron1, introduced by Frank Rosenblatt in January 1957 at Cornell Aeronautical

Laboratory [34], was the first algorithmically represented neural network, inspired by the

M-C neuron. The purpose of a Simple Perceptron is to perform binary classification tasks.

A Simple Perceptron is composed of three main elements: synapses, adders and activation

functions. Synapses are the connections between two different neurons of the net, each

of which has its corresponding synaptic weight. The term adder represents the linear

combination between inputs and their weights. Lastly, activation functions are non-linear

functions used to limit the output magnitude. Their role is key they introduce non-linear

operations to the chain, thus preventing networks from collapsing into a single neuron.

There are several examples of activation functions, including the sigmoid function 2, that

maps an input into a real value between 0 and 1, but also a group of piece wise linear

activation function, like the ReLU function 3 and its derivative Leaky ReLU, which are

indeed the most widespread. From a mathematical standpoint, a Perceptron can be

described as:

y = ϕ(
n∑

i=1

wixi + b) = ϕ(wTx+ b)

where ϕ(·) is a generic activation function, w is the weight vector, x is the input vector,

y the output vector and b is the bias component.

The Perceptron learns from a labelled training dataset and then adjusts the weights of

1The first concrete implementation was the Mark I Perceptron machine, designed for image recognition,
with an array of 400 photocells.

2y = σ(z) = 1
1+e−z

3f(x) = x+ = max(0, x)

25

the inputs during the training process to minimize classification errors. The learning

algorithm 4, also known as the Perceptron Learning Rule or the Delta Rule, updates the

weights, therefore the decision boundary, based on the previously observed error between

the predicted outputs and the true labels (Figure 4). This iterative learning process

continues until the perceptron classifies correctly all the available examples.

Figure 4: Perceptron learning process. In the left figure, the plane defined by wt

misclassifies one red and one blue point. In the middle figure, the red point x is chosen
and used for an update. Because its label is -1 we need to subtract x from wt. On the
right, the updated plane wt + 1 = wt − x separates the two classes and the Perceptron
algorithm has converged. Source:[35]

At this point, it seems clear that Neural Networks are not just a simple collection of

artificial neurons, conversely to make them work, they must be trained: their weights

must be tuned accordingly to minimize the loss function. The most common method is

back-propagation, an algorithm that resorts gradient descent to decide how to modify the

weights in order to improve the loss function. While the Perceptron is the basis for most

NNs, a Single-Layer Perceptron can only learn linear binary classifiers, therefore it is only

able to deal with perfectly separable data. To tackle more complex and high-dimensional

problems, such as the XOR logic operator, Multi-layer Perceptron (MLP) is the solution

as it introduces non-linearity. In addition to input and output layers, it has also one or

more hidden layers in between; it is a feed-forward neural network, which means that

the input data is fed through the network in a single direction, from left to right, with

no loops or connections. Each neuron in an MLP receives input from the neurons in the

previous layer, performs a weighted sum of the inputs, adds a bias term, and then applies

an activation function to the result. The output of each neuron is then passed as input

4The Perceptron learning algorithm is typically considered an online algorithm as the model is
continuously updated as new data points are observed, namely it scans the training dataset observation
by observation.

26

to the neurons in the next layer, and so on until the final output is produced. A MLP

with a single hidden layer can be represented as:

h = ϕ(Wxx+ bx)

y = Wyh+ by

where Wx is the weight matrix, used to map the inputs to the hidden layer, and Wy is

used to map the hidden layer to the output layer, the same applies to the bias component

b. The weight matrices in MLPs are usually initialized randomly with values in (0, 1), or

sampled from a uniform or normal gaussian distribution. Another widely used technique

is the Xavier/Glorot initialization [36], commonly adopted together with a tanh activation

function to fulfil the assumptions behind the mathematical proof. ANNs are nothing but

Multi-layer Perceptron, having more than one hidden layer. Choosing the best design of an

ANN architecture depends on several factors, namely the type of problem being solved, the

size of the dataset, and the computational resources available. In the upcoming sections,

we will delve into models specifically designed to handle sequential data, the scope of our

research.

4.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were born as an extension of traditional feed-forward

neural networks. The need for RNNs arises from the limitations of Multi-layer Perceptrons

(MLPs), in fact, unlike RNNs, MLPs cannot model sequences, lack a temporal structure

and can only process fixed-size inputs and outputs.

Moreover, while feed-forward networks process input data in a single pass through the

network with no memory, RNNs have loops that allow them to maintain an internal state

that can represent the context of the input data. A Vanilla Recurrent Neural Network

can be formulated as:

27

ht = ϕ(Wxxt +Whht−1 + bh)

yt = Wyht + by

where Wx is the weight matrix applied to the input, Wh is used to map values from

the previously hidden layer to the next one and Wy is the weight matrix that maps the

values from the current layer to the output layer. The recurrent structure can be better

visualized in Figure 5:

Figure 5: Computational graph of RNN. Source: [37]

One peculiarity of RNNs is that the parameters in the network are shared across time and

thus inputs, at each time step, affect the model parameters. Given the different structures,

the back-propagation algorithm is no more useful in this context. Starting from the 1980s,

Paul Werbos [38] and many other researchers [39], independently introduced the concept

of back-propagation through time (BPTT), a variant of the back-propagation algorithm

used in feed-forward networks. BPTT accounts for the temporal nature of RNNs by

unrolling the recurrent connections across time steps, each of which is considered as a

separate layer. The gradients of the loss function are computed at each time step and

accumulated over time. The process of optimization using BPTT is indeed very expensive

as the gradients of the model have to be calculated throughout the sequence. Another

downside of this architecture is related to long back-propagation sequences. Moving along

the states, the gradients will tend to vanish or even explode as the sequence gets longer.

Both of these scenarios may represent a serious threat to the model. In the first case, if

the weights are small, the gradients can become exponentially smaller with each layer,

28

and this leads to slower convergence or perhaps, it can cause the network to stop learning

altogether. To address this issue, several techniques are adopted, including:

1. Weight initialization - setting the initial weights in a manner that prevents them

from becoming excessively small or large can mitigate the problem of vanishing

gradients;

2. Non-saturating activation function - using activation functions that do not saturate 5

for large inputs, such as the Rectified Linear Unit (ReLU), Leaky ReLU, Parametric

ReLU (PReLU);

3. Batch normalization - applying batch normalization to the inputs of each layer can

help to stabilize the distribution of activation and gradients, making it easier to

propagate gradients through the network.

Instead, in the case of exploding gradients, one of the most popular methods is using

gradient clipping [40], namely choosing a maximum value that the gradient can attain, or

even reducing the learning rate while training the network.

4.4 Long-Short Term Memory

In 1997, to overcome the severe problem of gradients, Sepp Hochreiter and Jürgen

Schmidhuber proposed the Long Short-Term memory (LSTM) [41] model as a solution.

Compared to a recurrent cell, LSTM features some novelties:

1. memory cell structure - which can store and propagate information over multiple

time steps, allowing LSTM to preserve long-term dependencies in the data;

2. gating mechanism - three gates control the flow of information within the network,

enabling LSTM to selectively store and retrieve information as needed.

The structure of an LSTM unit is presented in Figure 6:

5The term ’saturate’ is used to indicate output values that are very close to the upper or lower bound
of the activation function.

29

Figure 6: Structure of a LSTM unit. Source: [42]

In the figure above ft, it and ot are the vectors of the forget gate, input gate and output

gate respectively. The input vector is denoted as xt, whereas ht is the hidden state vector.

Then ct and c̃t are the cell state and the cell input activation vectors. All the gates can

be rigorously formulated as follows:

ft = σg(W
fxt +Ufht−1 + bf)

it = σg(W
ixt +Uiht−1 + bi)

ot = σg(W
oxt +Uoht−1 + bo)

c̃t = σc(W
cxt +Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

yt = ht = ot ⊙ σh(ct)

with W, U and b being the weight matrices, recurrent weight matrices and bias vector

of different gates of the model, indexed by gate type, whereas σg, σc, σh are different

activation functions and the ⊙ is the Hadamard product (or element-wise product).

The input gate determines which elements in the long-term memory get updated by input

data from the current time step, the output gate selects long-term memory elements which

should be moved to the short-term memory and, lastly, the forget gate is used to decide

which long-term memory pieces must be erased, i.e. set to zero.

Although LSTM represents a remarkable improvement from RNN, it still has some pitfalls.

Among these, it is worth mentioning:

30

• Computational complexity - LSTMs are computationally more expensive than

simpler models like feed-forward neural networks, due to the higher number of

parameters and Back-Propagation Through Time algorithm;

• Difficulty in training - LSTMs can be difficult to train, especially if the input

sequences are very extended;

• Limited memory - despite their name, LSTMs can still struggle in remembering

information over very long sequences. This is because the memory cell can become

saturated or forget important information over time.

4.5 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [43] is a simpler variant of the aforementioned Long-

Short Term Memory model. This unit has only two gating mechanisms, the update zt and

reset rt gates. The update gate combines the functionalities of the forget and input gates.

Instead, the reset gate decides how much of the previous information of the previous

hidden state should be carried forward to the current state.

The following equations show the computations of all the gates and output vectors:

zt = σg(W
zxt +Uzht−1 + bz)

rt = σg(W
rxt +Urht−1 + br)

ht = (1− zt)⊙ ht−1 + zt ⊙ σh(W
hxt +Uh(rt ⊙ ht−1) + bh)

Specifically, the weight matrices and bias vectors are denoted as W, U, and b,

while the activation functions σg and σh are typically the sigmoid and hyperbolic

tangent, respectively. The GRU architecture has gained popularity due to its ability

to effectively capture long-range dependencies while mitigating the vanishing gradient

problem. Compared to an LSTM model, GRU has a simpler architecture, a flexible

memory management mechanism, moreover, it is faster to train and performs relatively

31

well even with smaller datasets. Ultimately, the choice between LSTM and GRU model

depends mostly on the specific task one aims to address 6.

4.6 Transformer and Attention Mechanism

Despite being out of the scope of this work, the latest advancement in sequential data

processing has been the development of the Transformer model and its numerous variants.

As previously anticipated in Chapter 1, this architecture was introduced by Vaswani et

al. (2017) in the pioneering paper called ’Attention is all you need’ [27] which has been

the starting point of a new era. As one can guess from the title, the authors explained

the concept of attention, which is indeed employed to overcome some of the sequential

models’ pitfalls. This concept is closely related to neuroscience too: as our brain, when

an image is presented, focuses only on certain regions 7, analogously the network focuses

on specific parts of the input sequence or image that are most relevant to the task at hand

[44].

The basic idea behind the attention technique proposed by Bahdanau et al. (2014) [45]

in a machine translation-related paper, is to assign weights to different parts of the input,

based on how important they are to the output. These weights are learned during training,

and they determine how much attention the network should pay to each part of the input

when generating the output. This is achieved by using queries Q, keys K and values

V that are compared to each other. The correspondence key-query is drawn from the

retrieving mechanism of a simple database, here, however, there is not just a single match,

in fact, the query matches against all the keys to a certain degree based on their dot

product. This latter is therefore nothing but a similarity score between the queries and

the keys. Then, the scores are used to weigh the corresponding values to produce a new

attention-weighted representation of the input sequence.

6In the last couple of years, many researchers have tried to combine them in a hybrid LSTM-GRU
model, thus taking advantage of the strengths of both.

7Related to images, visual attention mechanism is widely used in computer vision applications, such
as object detection, visual tracking and image captioning. By assigning attention weights to different
regions, the network knows which part has to focus on, leading to faster training. Saliency maps are
the pixel-wise representation of these areas, where brighter colors are used to highlight the most ’salient’
portions.

32

The attention mechanism represents a novelty for a variety of reasons: it can access

all states in the input sequence and address the problem of vanishing gradients, it is

bidirectional by its nature, therefore sequences can be scanned from start to end and vice

versa, moreover, unlike RNNs, it allows for some interpretability thanks to the attention

scores.

The Transformer model was originally applied for NLP tasks, such as Text Summarization,

Neural Machine Translation (NMT), Question Answering (QA), though Transformed-

based models have been deployed also for time series analysis tasks. The model consists

of an encoder and a decoder, each of which is structured in many layers, as depicted in

Figure 7.

Figure 7: Transformer model architecture. Source: [46]

The encoder takes the input sequence and produces a set of encoded representations, which

are then passed to the decoder block. The decoder then generates the output sequence

based on these encoded representations. The encoder is made of two main sub-layers, a

multi-head self-attention layer, that captures dependencies between different positions in

the sequence, and a position-wise fully connected feed-forward layer, that introduces non-

33

linearity in the model. The decoder is pretty similar, except for a masked self-attention

that is first applied, moreover, the multi-head attention in the decoder uses values from

both the encoder and decoder. Positional encoding aims at providing more information

about the order of the positions in the input sequence, whereas residual connections allow

the gradient to flow more easily from one layer to the other. Lastly, the output of the

decoder goes through a linear layer followed by a softmax activation function to get the

final probabilities over the target variables. Given the query, the key and the values, the

attention is computed as:

attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

where dk is the hidden dimension of the keys, Q, K, V are the matrices for queries, keys

and values, respectively. The square root of dk as denominator ensures a non-vanishing

gradient, as the variance of dot products in the similarity matrix increases as a function

of dk. Compared to RNNs, sequential data is input all at once in a transformer and

positional encoding maintains the sequential nature of the data. Moreover, transformers

do not have to process the input data from start to end, thus enabling parallelization

and lower training time. In the context of time series, a significant contribution is given

by the attention mechanism, which allows it to give more importance to certain parts

of the inputs, whereas common RNNs or LSTMs do not. In the end, it is interesting

to mention that with this new architecture, multi-step-ahead prediction is carried out

directly, i.e. forecasts y{T+h}, with h ∈ {1, 2, ..., H}. RNNs are only suitable for one-step-

ahead prediction: perhaps one can iterate n times such one-step prediction, though, with

this method, errors get propagated, and predictions may be inaccurate.

34

Chapter 5

Metrics of Evaluation

Selecting the appropriate forecast metric is key when comparing the performance of

different models. Depending on the characteristics of the models and tasks, different

metrics must be taken into consideration.

5.1 Mean Absolute Error (MSE)

Since we are dealing with a regression problem, therefore with a supervised learning task,

the ultimate goal is to minimize the loss function at the optimal point. In particular,

Mean Squared Error (MSE) is commonly used and it is computed as the average squared

deviations of the forecasted values from the true value of y, namely:

MSE =
1

N

N∑
t=1

(yt − ŷt)
2

where yt it the true value, ŷt is the predicted value, (yt − ŷt) is the error and N indicates

the number of observations in the dataset. MSE particularly penalizes extreme errors

because of the quadratic dependence the presence of outliers contributes to magnifying

its value. Moreover, it is very sensitive to the change in scale and data transformation.

Often, a slight variation of the MSE is used, namely the Root Mean Squared Error

35

(RMSE), whose mathematical formulation goes as follows:

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2

5.2 Mean Squared Error (MAE)

The Mean Absolute Error (MAE) is the average, in absolute value, of the difference

between the model’s prediction and the ground truth value:

MAE =
1

N

N∑
t=1

| (yt − ŷt) |

As the MSE, also the MAE cannot get negative because it considers the residuals in

absolute value. The advantage of MAE is that errors are weighted on a linear scale

(i.e. no squaring is involved), therefore very bad predictions do not affect too much the

overall performance. As a downside, the model may seem accurate, apparently, on the

vast majority of data, but in reality, it makes very poor predictions in some other cases.

Ideally, when evaluating time series-related models, one aims for lower values of MSE,

RMSE and MAE.

5.3 Akaike Information Criterion (AIC)

The Akaike Information Criterion is a statistical measure developed by Hirotugu Akaike

in 1974 [47] and it is founded on Information Theory. The AIC is obtained as:

AIC = 2k − 2ln(L)

where k 1 is the number of regressors included in the model and L represents the maximum

value of the likelihood function of the model. The AIC criterion is derived from the

1In the case of an ARIMA model, k is nothing but the sum of the parameters that specify the order.

36

Kullback-Leibler divergence2 [48], which measures the information lost when a model

is used to approximate the probability distribution of the underlying process. Such a

metric penalizes models with many parameters, as the first term in the formula increases

proportionally with k. Overall, the AIC aims at striking a balance between the goodness-

of-fit and the complexity of the model: a lower value is a synonym for a better model fit.

However, AIC per se is not a sufficient measure of model quality and it should be used in

conjunction with other considerations when selecting the appropriate model.

2Given two discrete probability distributions the KL divergence is computed as

DKL(P ||Q) =
∑

i P (i)log2(
P (i)
Q(i))

37

Chapter 6

Data Collection

The current and next chapters represent the heart of the empirical analysis. Beginning

with the data collection process, details about the data source and granularity are

provided, followed by a concise exploratory analysis 1. This latter aim to enhance the

motivations behind model development. The primary objective of this investigation is

to explore stock returns predictability using a variety of models, encompassing both

traditional econometric models and deep learning approaches.

Data Overview

A quick summary of the main features of the datasets can be visualized in Table 1:

Dataset Frequency No. of observations

Nasdaq-100 Minute 32641
AAPL Daily 3272

WTI Crude Oil Monthly 433

Table 1: Datasets overview

1More details and plots of the exploratory analysis are reported in Appendix A, at the end of this
work.

38

6.1 Nasdaq-100

The first dataset presented for this analysis is the Nasdaq-100 (NDX 2), perhaps the most

symbolic index for innovation and growth in the world of financial markets. It is home

to 100-plus of the largest domestic and international non-financial companies based on

market capitalization, ranging from technology, the most prominent sector, to health care,

utilities and telecommunication (Figure 8), therefore its analysis is crucial for gaining a

broader perspective on market conditions. It is worth underlying that there is often

confusion between the Nasdaq-100 and the Nasdaq Composite Index, also known as ”The

Nasdaq.” The latter encompasses all Nasdaq domestic stocks listed on the Nasdaq Stock

Market.

Figure 8: Nasdaq-100 index composition. Source: [49]

Given its significant concentration on technology companies, it provides insights into

the health of the tech sector and potential expansion opportunities. Minute-wise data

about the index is collected using Refinitiv, a leading platform to access real-time market

analytics. The dataset consists of 32641 non-null observations and 9 features, namely

Local Date, Local Time, the time indexes, Close, Net, %Chg, Open, Low, High price and

Volume. The closing price is further used to compute the log returns, the variable of

interest for our models. The time window is approximately 50 trading days, from March

until the half of May 2023.

2Indicates the corresponding ticker.

39

6.2 AAPL

Buying the Nasdaq-100 index has increasingly turned into a bet on a six-pack of tech

stocks. Apple became the first publicly traded U.S. company to hit a 1 trillion market

cap in August 2018 and quite recently, 3 trillion market capitalization. Speaking of

the technology sector and given its importance in today’s economy, Apple Inc. (AAPL

2) stock price is investigated. Apple is listed on the NASDAQ-100 exchange, where it

encompasses the 12% of shares of the total index. In this case, data is downloaded

from Yahoo! Finance 3, just by searching for ’AAPL’. The chosen time window covers

approximately 12 years, from 2010 to 2022 and the closing price exhibits an incredible

exponential growth throughout the period, with a sharp increase after 2020.

6.3 WTI Crude Oil

To introduce a bit of differentiation in our ideal portfolio and reduce the reliance on the

technology sector, we turn our attention to the price of crude oil. Given its significant

impact on both political and economic spheres, oil holds a crucial position nowadays,

with major oil-producing countries enjoying strategic influence. Overall, the oil price is

mainly determined by the amount of demand and supply, but a chaotic component is

always at stake. Of course, there are different types of oil, with different peculiarities.

West Texas Intermediate (WTI) crude oil, our focus 4, represents the benchmark in the

Americas for oil contracts traded on the New York Mercantile Exchange (NYMEX). Given

the interest in predicting future oil price variations, lots of research is ongoing, employing

both classical and deep learning models [50] [51]. WTI oil price (MCOILWTICO) 2 is

gathered from the FRED database, with a monthly frequency, from 1986 to 2022, for a

total of 433 non-null observations. As a side note, the unit of measurement for the oil

price is the dollars per barrel, not adjusted for seasonality.

3Yahoo! Finance is a public domain, authorized by the United States Securities and Exchange
Commission (SEC), containing over 40,000 stock quotes.

4Instead, Brent Blend is a mixture of crude oil from fifteen different oil fields in the North Sea and is
the primary reference in Europe and Africa.

40

Chapter 7

Modeling and Results

7.1 A premise

The primary objective of investing in financial markets is to achieve profitable returns

while managing risks. Common investments involve purchasing assets like stocks, bonds,

or deposits and holding them for a certain amount of time. In a few words, profits are

realized when the selling price of an asset exceeds its purchase price, taking into account

the initial capital, holding period, and price fluctuations. As highlighted in Appendix A,

the closing price exhibits substantial variability over time, making it impractical to use

for forecasting purposes. The reason behind this is that prices are susceptible to noise

and random fluctuations, which may not lead to accurate predictions. Relying solely on

the closing price, or even adjusted price, runs the risk of incorporating these random

variations, resulting in less precise forecasts. For the scope of this work, the focus will

be on returns, namely the change in price of an asset over time. Using returns can be

beneficial for several reasons:

1. Stationarity - stock prices are often non-stationary, meaning they exhibit trends,

seasonality, and other patterns over time. By taking the difference between

consecutive prices to calculate residuals (i.e. returns), you can transform the non-

stationary series into a stationary one. Stationary time series are generally easier

to model and analyze, as they have constant statistical properties over time;

41

2. Statistical assumptions - many statistical models, including linear regression and

auto-regressive models like ARIMA, assume that the residuals are independent and

identically distributed (i.i.d.) with zero means. By using residuals instead of raw

prices, you align the data with these assumptions;

3. Risk measurement: returns are immediately linked to the concepts of risk and

volatility. Predicting returns allows for better estimation and forecasting of

volatility, which is crucial for risk management and portfolio optimization strategies.

In financial modeling, it is common to replace simple returns with logarithmic returns,

because of their nice properties. They are symmetric around zero, meaning that returns of

equal magnitude but with opposite signs will cancel each other out, moreover, log returns

are time-additive, therefore the total return over an entire period is just the algebraic sum

of all the single returns in each sub-period.

Practically speaking, minute, daily and monthly log returns are computed as follows:

RL,t = ln

(
Pt

Pt−1

)
= ln(Pt)− ln(Pt−1)

where RL,t is a shorthand for log returns between time t− 1 and t, whereas Pt represents

the closing price of the stock at time t. It is worth mentioning that logarithmic returns and

simple returns are approximately equal. They are linked to one another by the following

formula:

RL,t = log(1 +RS,t)

therefore, by considering a first-order Taylor approximation1, log returns and simple

returns are almost identical within the trading day unless big shocks take place.

1Note that the Taylor approximation for the function is:

log(1 + x) ≈ log(1 + a) +
1

1 + a
x

so at the origin, when a = 0
log(1 + x) ≈ x

.

42

Figure 9: Simple returns vs. Logarithmic returns. Source: [52]

More specifically, Figure 9 clearly shows that the two returns are very similar in magnitude

as long as RS,t ≤ 0.15 [53]. A large debate about whether to use simple or log returns is

going on, mainly because simple returns may be more explicit as they signal what you get

in the end. However, for the scope of this analysis, log returns are preferred, especially

for some desirable properties, some of which are listed below:

1. Stationarity - values typically fluctuate around a constant level, thus suggesting a

constant mean over time;

2. Heavy tails - the distribution of the log returns often shows heavy tails compared

to those of a normal distribution. Quantile-Quantile (QQ) plot is generally used for

checking normality, together with the Jarque-Bera test 2;

3. Asymmetry - the distribution of return is often negatively skewed, reflecting the fact

that the downturns of financial markets are often much steeper than the recoveries.

In other words, investors are more sensitive to negative information rather than

positive news;

2Jarque-Bera test checks whether the skewness and the kurtosis of a statistical distribution match the
one of the normal. The statistic is computed as:

JB =
n

6
(S2 +

1

4
(K − 3)2)

where S is the sample skewness, K is the sample kurtosis and n is the number of observations.

43

4. Volatility clustering - this term describes the phenomenon where significant price

changes, characterized by large absolute values, tend to occur in clusters or groups.

Indeed, large price changes tend to be followed by large price changes, and periods

of tranquillity alternate with periods of high volatility.

7.2 Data preprocessing

Data preprocessing always plays a crucial role in enhancing the quality of data. In

particular, by analyzing these datasets, we spot no missing values or anomalies of any

kind. Moreover, as explained above, log returns are used as a regressor of our models.

While daily and monthly data exhibit considerable variability over the extensive-time

period considered, including multiple years, with high-frequency data is better to discard

the first and last hour of trading data. Trading near the bells becomes quite hectic and

the level of liquidity, therefore volatility, varies a lot intra-day. Most often than not,

when the market opens, exaggerated price movements are observed since traders react to

overnight information or adjust their position to take the most out of it. Similarly, when

the market approaches closing time, traders may rush to place many orders. To conclude,

removing these specific data points may help to eliminate some of the noise and extreme

fluctuations [54].

7.3 Rolling window approach

When dealing with time series analysis, several approaches can be resorted to make

forecasts, according to the type of data at hand. In this scenario, to compare different

granularities of data, a rolling window technique is adopted to make predictions on the

test set. In particular, look-back and look-forward variables are defined, so that the

model knows how many values to look at, during the training, and how many to predict,

respectively. The choice of these values depends on the research question one may want

to address, together with the type of data and the amount available. Table 2 shows the

window lengths and prediction horizons that are considered for each dataset:

44

Dataset Granularity Look-back Look-forward

Nasdaq-100 Minute 50 minutes 10 minutes
AAPL Daily 60 days 7 days

WTI Crude Oil Monthly 48 months 6 months

Table 2: Summary of the windows lengths

Speaking of low or medium-frequency data, these lengths are quite standard, whereas,

with high-frequency data, it could be better to play with them since the more values

you include in the training, the better the prediction. Given that is quite difficult to

manipulate and execute code on extensive datasets, we try to strike a balance to get a

reasonable forecast.

7.4 ARMA implementation

Despite their simplicity, econometrics models are still used nowadays to investigate stock

and index behaviour. When it comes to the ARIMA family models, it is important to

do some background checks before instantiating the model order and forecast. In fact,

as explained in Chapter 7.1, for the purpose of detrending, log returns are considered

instead of prices. To make sure they are stationary, the Dickey-Fuller test is run on data,

confirming that our series has no unit root. Kwiatkowski–Phillips–Schmidt–Shin (KPSS)

test and Phillips–Perron (PP) test is further executed, suggesting the same outcome:

no need for differencing. Therefore, by this, we can state that the order parameter

d = 0. Regarding the order of two parameters, p and q, a common practice is by

trial-and-error, namely a subset of parameters is used to run the model several times,

in the end, the parameters that minimize the AIC score are deemed to be optimal. To

do this automatically, Python provides the function auto arima, which tries multiple

combinations of parameters, however, given the data at hand ARMA(1,1) is undoubtedly

enough for fitting purposes. More complex models may also be used, though some

problems arise quite commonly, for instance, over-fitting, numerical instability and lack of

interpretability. According to our initial aim, look back and look forward period are used

45

to train the ARIMA (1,0,1) model, in particular, inside a for loop, the SARIMAX model is

instantiated, then fitted and forecasts are made using the specified look forward variable.

In order to plot the results, two lists are created, so that at each iteration forecasts and

time indexes are appended. As can be deduced from the plots below, the forecast made

by the ARMA is a naive forecast, namely the prediction for the next period is based on

the last period and varies around zero.

Figure 10: ARMA predictions vs.True data

As one would expect, both the ACF and PACF decline geometrically, in particular, the

first plot is the result of the AR process, whereas the second depicts the MA process.

Results

Common evaluation metrics such as MSE and RMSE are employed to compare the

performance of ARMA(1,1) in Table 3.

Dataset MSE RMSE

Nasdaq-100 1.13724 0.00034
AAPL 0.00054 0.02325

WTI Crude Oil 0.03257 0.18047

Table 3: ARMA model Results: MSE and RMSE

46

7.5 LSTM implementation

There are several ways to implement an LSTM model using Python, however, the Keras

library, a high-level API built on top of TensorFlow is adopted for this work, especially

for its easy-to-use interface and scalability while designing the network.

As discussed in Chapter 1, Deep Learning models are capable of dealing with raw data

effectively, thus reducing the need for extensive feature engineering. In particular, given

that we are dealing with returns and not prices, we do not perform any scaling 3.

The LSTM model is specified by a model builder function, which adds to the Sequential()

module an LSTM layer, with a tanh activation function, some Dense and dropout 4 layers.

For all the datasets, the Adam 5 optimizer is used, which is one of the current default

optimizers in deep learning development. Regarding the loss function, mean squared error

loss is selected. The subsequent step is to wrap the LSTM in a KerasRegressor object,

a tool to interface Keras models with scikit-learn’s cross-validation and hyper-parameter

tuning functionalities.

Cross-Validation

When dealing with time series data, the conventional approach of splitting the data into

training and test sets may not be enough. Traditional cross-validation techniques are often

inadequate for sequential data problems due to the risk of overfitting and the temporal

nature of the data. For example, methods like k-fold cross-validation, stratified k-fold

cross-validation, and leave-p-out cross-validation are not appropriate as they shuffle the

data and do not preserve the temporal coherence between the validation folds and the

actual test set.

3In other cases, MinMaxScaler() is commonly adopted to re-scale data between 0 and 1, separately
in the training and test set, to avoid data leakage. Data leakage refers to a problem where information
about the holdout dataset, such as a test or validation dataset, is made available to the model in the
training dataset. This leakage is often small and subtle but can have a marked effect on performance.

4In Machine Learning, dropout is a regularization technique consisting of ignoring randomly selected
neurons. The dropout layer is specified by a rate, which indicates the proportion of 0s and 1s in the
instantiated tensor, which is nothing but a mask applied on the previous layer to prevent over-fitting [55].

5Adam stands for “Adaptive Moment Estimation” and can be considered as a combination between
two other popular optimizers AdaGrad and RMSProp.

47

To perform cross-validation on the LSTM parameters, BlockTimeSeriesSplit resorts

to GridSearch CV, a technique for hyper-parameter tuning that exhaustively searches

through a specified grid of hyperparameters to find the best combination of values for a

given model. The number of splits can be manually set before instantiating GridSearchCV,

as well as the parameters grid and scoring function.

Once the best parameters have been retrieved from cross-validation (Table 4) and stored

in an appropriate dictionary, the best model is instantiated using them as arguments.

Dataset batch size drop rate epochs lstm units

Nasdaq-100 32 0.1 20 64
AAPL 64 0.1 15 128

WTI Crude Oil 32 0.1 15 64

Table 4: GridSearch CV optimal parameters

Results

After completing the training phase, predictions are made using the test data set apart.

Finally, standard evaluation metrics like MSE and RMSE are used to measure the

discrepancies between predictions and ground truth data (Table 5).

Dataset MSE RMSE

Nasdaq-100 1.74077e-07 0.00042
AAPL 0.00042 0.02058

WTI Crude Oil 0.03488 0.18676

Table 5: LSTM Results: MSE and RMSE

Overall, the values of these metrics are pretty low, however, by plotting the results, one

can get more easily a sense of what is happening.

48

Figure 11: LSTM predictions on Nasdaq-100 data

Figure 12: LSTM predictions on AAPL data

Figure 13: LSTM predictions on WTI data

Based on the plots above, it can be inferred that the LSTM model is capable of capturing

the general trend and movement of the returns over time, however, it lacks precision in

predicting the exact values. Perhaps, such a model could be better in classification tasks,

for instance predicting whether the returns, therefore the prices, go up or down at the

next time step.

49

7.6 FB Prophet

Facebook Prophet, or more simply Prophet, is an open-source library for forecasting

tasks, developed by Facebook’s data science team in 2017. Prophet is often considered an

alternative to ARIMA models, however, to be more precise, it may be helpful when dealing

with time-series data that have strong seasonal effects. In fact, among the advantages of

this library, we can mention an automatic function that detects seasonality, but also its

intuitive interface and flexibility, which allows to programmer to set the desired granularity

of data.

The Prophet procedure is nothing but an additive regression model, belonging to the

Generalized Additive Model (GAM) family, with four main components [56]:

y(t) = g(t) + s(t) + h(t) + ϵt

where

• g(t) is a piece-wise linear or logistic curve that models trend;

• s(t) models seasonality using the Fourier series and describes how data is affected

by seasonal factors such as the time of the year;

• h(t) is the effect of holidays or events that impact business-related time series;

• ϵt which represents the error term of the model at each time step t.

To better understand how Prophet works, we have to think of it as a ”data analyst-

centric” model (Figure 14). The framework is double-sided: on one side model fitting is

automated, pretending that the user has no previous statistical knowledge of the data,

whereas on the other side, the framework allows the same user to input information based

on his personal or industry knowledge [57].

50

Figure 14: Analyst-in-the-Loop modeling. Source: [57].

Overall, Prophet has proved to be an interesting library in the time series panorama,

though its performance is sometimes not as accurate as one may expect. All the results

are displayed in the dedicated Appendix B paragraph titled Prophet Results.

51

Chapter 8

Conclusion

After delving into the complexities of exploratory analysis, random movements and

patterns inherent in the data, it becomes straightforward that accurately predicting

stock future behaviour is not an easy task. Overall, classical models are only able

to make naive forecasts on our dataset, whereas the LSTM model can capture some

dependencies across time steps, even though they are not so accurate. Based on the

observed model performance, we can identify areas for potential future improvement.

Specifically, to enhance the results of deep learning models like LSTM, two primary

options can be explored: increasing the training data volume and incorporating more

complex features. To achieve better outcomes, it is advisable to consider expanding the

dataset or adjusting the rolling window length. Accurately predicting log returns often

necessitates a substantial historical dataset capable of capturing diverse market conditions

and trends. For example, when working with high-frequency data such as minute data,

it is common to employ several years of observations to predict just a few minutes into

the future. Along with expanding the training data, one could also explore incorporating

additional features, or evaluating a portfolio of several stocks, thereby transforming the

model into a multivariate one. However, it is important to note that this approach

would introduce more complexity and increase the computational cost. Strictly related

to model complexity, another option could be to use advanced architectures to unlock

additional capabilities in capturing long-term dependencies, handling temporal dynamics,

and achieving heightened prediction accuracy, as specified in Chapter 1, for example,

52

the Transformer and TFT model. Furthermore, considering the model’s current lack of

precision, it might be advantageous to exploit it for classification tasks. For example,

instead of attempting to predict the exact behaviour of stock returns, the model could

be trained to classify whether the return for the next period will be positive or negative.

Indeed, the accuracy of the model could improve because of the inherent advantages of

dealing with binary outcomes, which is easier compared to predicting the exact numerical

value. Additionally, it is important to remember that financial data analysis is not limited

to just numerical data. Another fashion to boost the model is to include textual data

analysis. In recent years, we observe an increased interest in news, tweets, and articles that

may significantly impact asset prices. Especially with the rise of social media and the ease

of accessing information online, investors and traders are increasingly incorporating news

and sentiment analysis into their decision-making processes. One of the most widespread

approaches is sentiment analysis, which consists of quantifying the positive, negative, or

neutral tone of news articles or tweets. Natural language processing algorithms are often

employed to automatically categorize the sentiment of textual data. By examining the

sentiment of news or tweets related to a particular asset or company, researchers can

identify correlations between sentiment and subsequent price movements.

Lastly, considering the classical model, one may focus the analysis on volatility rather than

on prices or returns, as in risk management applications. A commonly used approach is

to employ Autoregressive Conditional Heteroscedasticity (ARCH) models 1 or its variants

[58] [59] [60]. In particular ARCH(1) and GARCH(1,1) introduce non-linearity and usually

provide a very good fit to log return data, higher-order models are rarely employed in

experiments.

1The ARCH model was introduced by Robert Engle, who won the Nobel Prize in Economics in 2003.
Some years later, Engle’s PhD student Tim Bollerslev, developed the GARCH model.

53

Bibliography

[1] Eugene F. Fama. Random walks in stock market prices. Financial Analysts Journal,

21 no.5:55–59, 2010.

[2] Random walk hypothesis - Wikipedia, the free encyclopedia, 2023. [Online; accessed

28-May-2023].

[3] David N. Dreman and Michael A. Berry. Overreaction, underreaction, and the low-

p/e effect. Financial Analysts Journal, 51(4):21–30, 1995.

[4] Andrew W. Lo and A. Craig MacKinlay. A Non-Random Walk Down Wall Street.

Princeton University Press, 1999.

[5] Burton G. Malkiel. A random Walk Down Wall Street. WW Norton, New York, 12th

edition, 2019.

[6] A. W. Lo and J. Hasanhodzic. The Evolution of Technical Analysis: Financial

Prediction from Babylonian Tablets to Bloomberg Terminals. Bloomberg Press, 2010.

[7] Generic hype cycle of a technology. https://commons.wikimedia.org/wiki/File:Hype-

Cycle-General.png/media/File:Hype-Cycle-General.png.

[8] Occam’s razor - Wikipedia, the free encyclopedia, 2023. [Online; accessed 6-June-

2023].

[9] Goodwin P. O’Connor M. Önkal D. Lawrence, M. Judgmental forecasting: A review

of progress over the last 25 years. International Journal of Forecasting, 22 no.3:493–

518, 2006.

54

[10] Jan G. De Gooijer and Rob J Hyndman. 25 years of time series forecasting.

International Journal of Forecasting, 22:443–473, 2006.

[11] Gwilym M. Jenkins George E. P. Box. Time series analysis: Forecasting and control.

Journal of Time Series Analysis, 37:712, 2016.

[12] Eberhard Schöneburg. Stock price prediction using neural networks: A project

report. Neurocomputing, 2:17–27, 1990.

[13] B. W. Wanjawa and L. Muchemi. Ann model to predict stock prices at stock exchange

markets, 2014.

[14] Sheng Chen and Hongxiang He. Stock prediction using convolutional neural network.

IOP Conference Series: Materials Science and Engineering, 435:012026, 11 2018.

[15] Hiransha M, E. A Gopalakrishnan, Vijay Menon, and Soman Kp. Nse stock market

prediction using deep-learning models. Procedia Computer Science, 132:1351–1362,

01 2018.

[16] Sreelekshmy Selvin, R. Vinayakumar, E. A. Gopalakrishnan, Vijay Krishna Menon,

and K. P. Soman. Stock price prediction using lstm, rnn and cnn-sliding window

model. 2017 International Conference on Advances in Computing, Communications

and Informatics (ICACCI), pages 1643–1647, 2017.

[17] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time

series using stacked autoencoders and long-short term memory. PLoS ONE, 12, 07

2017.

[18] Shereen Elsayed, Daniela Thyssens, Ahmed Rashed, Hadi Samer Jomaa, and Lars

Schmidt-Thieme. Do we really need deep learning models for time series forecasting?,

2021.

[19] Eduardo Ramos-Pérez, Pablo J. Alonso-González, and José Javier Núñez-Velázquez.

Multi-transformer: A new neural network-based architecture for forecasting s&p

volatility. Mathematics, 9(15):1794, jul 2021.

55

[20] Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan. Deep learning for event-driven

stock prediction. In International Joint Conference on Artificial Intelligence, 2015.

[21] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and

Pierre-Alain Muller. Transfer learning for time series classification, 2018.

[22] Tian Zhou, PeiSong Niu, Xue Wang, Liang Sun, and Rong Jin. Power time series

forecasting by pretrained lm, 2023.

[23] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

Language models are unsupervised multitask learners. 2019.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

[25] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image

transformers, 2022.

[26] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion

transformers for interpretable multi-horizon time series forecasting, 2020.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[28] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan

Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length

context, 2019.

[29] HuggingFace. Transformer xl. Accessed on Month Day, Year.

[30] Evaluating forecasting method using autoregressive integrated moving average

(arima) approach for shariah compliant oil and gas sector in malaysia - scientific

figure on researchgate. https://www.researchgate.net/figure/Forecasting-procedure-

using-Box-Jenkins-approach fig1 328630224 [accessed 20 May, 2023].

56

[31] Frederic B. Fitch. Warren s. mcculloch and walter pitts. a logical calculus of the ideas

immanent in nervous activity. bulletin of mathematical biophysics, vol. 5 (1943), pp.

115–133. The Journal of Symbolic Logic, 9(2):49–50, 1944.

[32] Dan Jurafsky and James H. Martin. Speech and Language Processing. 3rd edition,

2023.

[33] Anatomy of a multipolar neuron. https://upload.wikimedia.org/wikipedia/commons

/thumb/1/10/Blausen 0657 MultipolarNeuron.png/500px-

Blausen 0657 MultipolarNeuron.png.

[34] F. Rosenblatt. The perceptron - a perceiving and recognizing automaton. Technical

Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca, New York, January 1957.

[35] Illustration of a perceptron update. https://www.cs.cornell.edu/courses/cs4780/2018fa/

lectures/images/perceptron/PerceptronUpdate.png.

[36] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,

Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249–256.

PMLR, 13–15 May 2010.

[37] Computational graph of a recurrent neural network with one hidden layer.

https://www.researchgate.net/publication/342156022/figure/fig4/AS:9414646410977

70@1601474070772/Computational-graph-of-a-recurrent-neural-network-with-one-

hidden-layer-29.png.

[38] Paul J. Werbos. Generalization of backpropagation with application to a recurrent

gas market model, January 1988.

[39] Michael C. Mozer. A focused backpropagation algorithm for temporal pattern

recognition. Complex Syst., 3, 1989.

57

[40] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks, 2013.

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, nov 1997.

[42] Lstm cell architecture. https://thorirmar.com/post/insight into lstm/featured.png.

[43] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations

using rnn encoder-decoder for statistical machine translation, 2014.

[44] Fatoumata Dama and Christine Sinoquet. Time series analysis and modeling to

forecast: a survey, 2021.

[45] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate, 2016.

[46] The transformer-model architecture. https://proceedings.neurips.cc/paper files/paper

/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[47] H. Akaike. A new look at the statistical model identification. IEEE Transactions on

Automatic Control, 19(6):716–723, 1974.

[48] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, March 1951.

[49] Nasdaq-100 vs. sp 500. https://www.nasdaq.com/articles/nasdaq-100-vs.-sp-500-

2019-03-01-0.

[50] Junhui Guo. Oil price forecast using deep learning and arima. In 2019 International

Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI),

pages 241–247, 2019.

[51] Y. Jeevan Nagendra Kumar, Partapu Preetham, P. Kiran Varma, P. Rohith,

and P. Dilip Kumar. Crude oil price prediction using deep learning. In 2020

58

Second International Conference on Inventive Research in Computing Applications

(ICIRCA), pages 118–123, 2020.

[52] Eric Kammers Colton Smith. Relationship between simple and log returns.

https://quantoisseur.files.wordpress.com/2017/11/fig2.png.

[53] William R. Kinney Michael S. Rozeff. Capital market seasonality: The case of stock

returns. Journal of Financial Economics, pages 379–402, 1976.

[54] Lee Bohl Randy Frederick. Trading near the bells, what to know about the market’s

two most volatile trading hours. https://www.schwab.com/learn/story/trading-near-

bells [Online; accessed 30-May-2023].

[55] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[56] Md Jamal Ahmed Shohan, Md Omar Faruque, and Simon Y. Foo. Forecasting of

electric load using a hybrid lstm-neural prophet model. Energies, 15(6):1–0, 2022.

[57] Sean J. Taylor Benjamin Letham. Forecasting at scale. The American Statistician,

pages 37–45, 2018.

[58] Robert F. Engle. Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica, 50(4):987–1007, 1982.

[59] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal

of Econometrics, 50(Volume 31, Issue 3):987–1007, 1986.

[60] Embrechts P. Frey R. McNeil, A.J. Quantitative Risk Management: Concepts,

Techniques and Tools. Princeton University Press, revised edition edition, 2015.

59

Appendix A

Exploratory analysis

Nasdaq-100

In data analysis, it is considered good practice to take a quick look at the data and

perform some feature engineering to eliminate any duplicated, irrelevant, or missing data

observations. The Nasdaq-100 dataset stands out as the largest among the datasets

included in this work, with a total of 32,641 minute observations, ranging from March to

the half of May 2023. However, after performing calculations for log returns and removing

data points, the dataset is reduced to 13,988 observations. In this particular case, the

data does not exhibit a clear trend, moreover, minute log returns can be observed in

Figure 15.

Figure 15: Nasdaq-100 logarithmic returns

Larger fluctuations are recorded at the beginning of April, followed by relatively lower

returns for the rest of the month.

60

AAPL

The AAPL dataset contains data points spanning from April 2010 to December 2022,

with a daily frequency. The exploratory analysis begins by examining the overall pattern

of the data: more specifically, we can observe a consistent upward trend in the AAPL

stock price (Figure 16). This latter undergoes fluctuations influenced by various factors

including product launches, financial performance of the company, and market conditions.

Additionally, notable price shocks have occurred as a result of events like stock splits and

the Covid-19 outbreak, as evidenced in 2020.

As mentioned in previous chapters, an essential step is to clean up the dataset. Given

that our focus is on log returns and there is a high degree of collinearity among variables,

we will only keep one column.

Figure 16: Price history and logarithmic returns for AAPL dataset

Before proceeding with the implementation of classical models, it is crucial to assess the

stationarity of the time series. Dickey-Fuller test is performed on daily log returns data:

the obtained p-value, which is close to zero, allows us to rejectH0, confirming that the data

is stationary as expected. Two additional statistical tests were run in the code, namely

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Phillips–Perron Test (PP), supporting

the previously stated outcome.

WTI Crude Oil

The WTI Oil dataset is made of 433 non-null observations ranging from January 1986 to

January 2022, with a monthly frequency. The dataset includes a single column labelled

61

’MCOILWTICO,’ which shows the price at which it closes. By examining Figure 17, we

can spot the general trend and fluctuations. Undoubtedly, the major shock is the fall in

price due to the economic crisis in 2008, even though, a significant decrease is observed

also around 2014. For the scope of the analysis, monthly log returns are then computed,

stored in a new dataset column and further plotted.

Figure 17: Price history and logarithmic returns for WTI Crude Oil dataset

As expected, the returns reflect the price movements, moreover from the additive

decomposition plot, we are guaranteed that there is no general trend but a lot of variability.

To check for stationarity, the Dickey-Fuller test is performed confirming the stationarity

of data with a p-value of almost zero.

Python Libraries

For the scope of this analysis, several Python libraries have been used to speed up the

pre-processing of data, but also the construction of the models, in particular: Pandas,

Numpy, Keras, Sklearn, Matplotlib, Seaborn and Prophet.

Code

The full code is available at the following GitHub page. A README file details the

structure of the repository, containing the datasets, divided by granularity, and all the

printed Colab notebooks.

62

hhttps://github.com/GiuliaPaggini/Time-Series-Forecasting

Appendix B

Prophet Results

This section serves as a continuation of paragraph 7.6 and contains supplementary results

of the Prophet implementation. To successfully fit a Prophet model, the first step is

to ensure that the dataset is structured according to the prescribed format, including

specific column names. Specifically, the column containing the date should be renamed as

’ds’, while the column containing the closing price (or log returns), serving as the target

variable, should be labeled as ’y’. The dataset, containing only two variables, log returns

and adjusted close price, is further divided into a training and testing set. In particular,

the shape of the train and test sets are outlined in Table 6:

Data Train Set Test Set

AAPL (2769, 2) (503, 2)
WTI Crude Oil (372, 2) (61, 2)

Table 6: Train-Test sets shape

The model is simply instantiated by calling Prophet() and then fitted on the training

data; the .make future dataframe command is used to make predictions, according to the

desired frequency.

In Figures 18 and 19, Prophet forecasts can be observed for both types of data, together

with its metrics in Table 7 and 8. The code provides also interactive plots, which offer a

deeper understanding and additional insights.

63

Figure 18: Prophet predictions on AAPL data.

Figure 19: Prophet predictions on WTI Crude oil data.

Dataset Frequency RMSE

AAPL Daily 20.701
WTI Crude Oil Monthly 14.697

Table 7: Results of Prophet implementation using Adj Close price.

Dataset Frequency RMSE

AAPL Daily 0.01984
WTI Crude Oil Monthly 0.15059

Table 8: Results of Prophet implementation using Log returns.

Overall, the Prophet model does its best in the presence of seasonality in time series

data. The performance metrics are quite good and Prophet can capture the macro trend

either in log returns, which vary around zero and adjusted price, though it struggles to

deal with unexpected changes due to the economic crisis, shocks or perhaps, the launch

of new products in the case of Apple Inc. Moreover, for this analysis, fine-tuning of

the model has not been carried out, since it is deemed to be too expensive compared

64

to the real contribution to the performance of the model. The prophet model has

several parameters that one may consider tuning, for instance, changepoint prior scale,

seasonality prior scale, and holidays prior scale, however, this requires the collection of

extra information about the stock or index under consideration.

To conclude, when it comes to minute-wise data, as this is the case with Nasdaq-100, we

decided not to use Prophet as it may not capture all the nuances and dynamics of intra-

day trading. Prophet’s strength lies in capturing longer-term patterns and seasonality.

For achieving higher accuracy and precision in forecasting, it may be necessary to explore

alternative models or techniques specifically designed for analyzing high-frequency data.

Alternatively, one could aggregate minute-level data into higher frequencies, such as

hourly or daily intervals. However, it is important to note that this aggregation process

may lead to data shrinkage and potentially result in a loss of meaningful information.

Careful consideration should be given to the trade-off between granularity and the

potential loss of relevant details when choosing the appropriate data aggregation strategy.

65

	Introduction
	Literature Review
	Basic Concepts of Time Series
	Time Series definition and Properties
	Why do we need time series?
	Time Series Components
	Correlation and Autocorrelation

	Classical Approach
	AR(p)
	MA(q)
	ARMA(p,q)
	ARIMA(p,d,q)
	SARIMA(p,d,q)(P,D,Q,s)
	Box-Jenkins Methodology

	Deep Learning Approach
	The Artificial Neuron
	The Perceptron
	Recurrent Neural Networks
	Long-Short Term Memory
	Gated Recurrent Unit
	Transformer and Attention Mechanism

	Metrics of Evaluation
	Mean Absolute Error (MSE)
	Mean Squared Error (MAE)
	Akaike Information Criterion (AIC)

	Data Collection
	Nasdaq-100
	AAPL
	WTI Crude Oil

	Modeling and Results
	A premise
	Data preprocessing
	Rolling window approach
	ARMA implementation
	LSTM implementation
	FB Prophet

	Conclusion
	Bibliography
	Appendix A
	Appendix B

