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1 Introduction and Research Goal

Real estate is one of the few markets that can truly impact the economy of a country. Therefore, policy makers,
businesses, and consumers look to understand its dynamics and predict its movements. A key metric that
stakeholders track is sale prices. Houses have certain features, all of which have an impact on the price. Morevoer,
as a city evolves, different areas emerge, with some being more premium and expensive than others.

The aim of this research is to identify which house features have the most variable effect on the price across
Melbourne’s council areas. We hypothesize that the importance of house features is heterogeneous across space,
meaning that features have varying value across Melbourne’s geography. For example, parking spaces are
more valuable in the city center, due to space constraints, compared to the suburbs, where space is abundant.
Understanding this spatial heterogeneity would benefit all types of stakeholders in real estate.

2 Data

2.1 Exploration and Imputation

The provided dataset contains 13580 rows and 21 columns, with missing values in Car, Building Area, Year
Built and Council Area. We decide to impute the values that are missing using Bayesian Imputation, in order
not to lose anything that could be valuable in the analysis.
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In fact, removing all rows with missing values would lead to a 54.37% loss of observations in the dataset. We use
Bayesian imputation due to its robustness to outliers, and we proceed with outlier detection and treatment in a
subsequent section.

Initially, we planned to impute the missing Car values using the average for each Council Area. However, after
analyzing the data, we found that the proportion of missing Car values in all Council Areas was zero. Therefore,
we impute using the average Car value within a 10km radius. For Building Area, we use the correlated
features Landsize, Rooms, Price and Type for imputation, applying a truncated Normal distribution to ensure
non-negative values. Missing Council Area values are imputed by assigning the council of the suburb. For the
29 suburbs with multiple councils, we compute the mean geographic location (using Longitude and Latitude)
and impute based on proximity. For Year Built, we fill missing values using the mean Year Built value per
Council Area and Type, capturing differences across administrative zones and property types. In cases where
data is missing for a specific combination, we use the average year per Council Area or, if needed, per Type.
Finally, we round all the discrete variables and set the appropriate variable types.

2.2 Analysis

Next, we examine correlations among the variables in the dataset. The heatmap (see Figure 1 in the Appendix)
highlights notable relationships: Rooms, Bedroom2, Bathroom, and Car exhibit positive correlations, suggesting
that properties with more rooms tend to have additional bedrooms, bathrooms, and car spaces, which aligns with
expectations for larger properties. Landsize and Building Area also display a moderate positive correlation,
indicating that larger lands typically have bigger buildings. Price correlates moderately with Building Area
and Rooms, suggesting these factors significantly influence property prices. In contrast, Year Built shows weak
correlations, likely due to variations in design, features, and external factors like location and renovations.

To ensure our analysis remains robust and representative of general trends, we remove outliers using the Interquar-
tile Range (IQR) method. This approach allows us to filter out extreme values for each numerical variable, focusing
on observations within 1.5 times the IQR from the lower and upper quartiles. By excluding these rare occurrences,
we reduce the skewness in our data, particularly evident in variables like Price, Landsize, and Building Area.
This step is crucial in refining our dataset to better capture the central tendencies and relationships of interest.
Moreover, managing outliers enhances model accuracy by ensuring that extreme values do not skew coefficients.

We proceed with producing a series scatter plots to infer potential relationships. We observe that as Landsize
increased, Price generally goes up, though variability suggested other factors influence property values. A similar
trend appears between Price and Building Area, with diminishing returns at larger sizes. For a detailed visual
comparison of the data before and after outlier treatment, as well as to see the scatter-plots, please refer to figures
3 to 7 in the Appendix.

We focus our study on the following variables: Price, Building Area, Council Area, Distance, Car,
Bathroom, Bedroom2, Month. These are chosen because: (1) they are all numerical, thus easier to manipulate;
(2) they represent house characteristics and exclude external factors such selling skills of the real estate agent,
except for time; (3) they are all possibly correlated with Price. Moreover, we restrict our attention to the active
council areas, i.e.where the total number of properties sold exceeds 200. This threshold corresponds to an average
of approximately 8 properties sold per month.

Finally, we test our spatial heterogeneity hypothesis by we creating a correlation barplot to analyze the relationship
between our selected house feature and house prices, segmented by council areas. 1 The plot shows that the
influence of covariates on house prices varies across council areas, thus supporting our hypothesis and emphasizing
the importance of our research.

2.3 Preparation

Before modelling, we prepare the data via a couple of processing steps. First, we retain the IQR filter, thus
excluding rare occurrences and focusing our research on typical patterns, which in turn improves model stability.
Then, we apply standardization (or z-score transformation) on the data by subtracting the mean and dividing by
the standard deviation for each variable. This removes differences in units and magnitudes between the variables,
enabling an unbiased interpretation and fair comparison of the estimated coefficients.
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Figure 1: Correlation of covariates with Price segmented by the selected council areas

3 Modelling

3.1 Hierarchical – Mixed Effects Model

For our research we employ a hierarchical-mixed effects model. The hierarchical structure offers a principled way
to accommodate council-level heterogeneity. [3] The mixed effects framework allows us to distinguish between
house features with a fixed effect on the price, i.e. constant across council areas, and the features with a random
effect on the price, i.e. varying across across council areas. [4]

Let each house sale i be characterized by a sale price yi ∈ R (our target variable), a set of features Xi ∈ RF

having a fixed effect on yi, and a feature Zi ∈ R having random effect on yi across council areas. Furthermore,
we define two grouping factors to account for spatial and temporal effects. Let index j(i) indicate the council area
in which i is located in, for j(i) ∈ {1, ..., J} levels, where J is the number of council areas, and let index m(i) be
the month when the sale of house i is recorded, for m(i) ∈ {0, ..., 11} levels. Then, we model the sale price yi of
house i as

yi ∼ N(tm(i) + uj(i) +XT
i β + Zivj(i), σ2

ϵ )

The model’s parameters of interest are:

• tm(i) ∈ R, the intercept random effect specific to month m(i);

• uj(i) ∈ R, the intercept random effect specific to council j(i);

• β ∈ RF, the slope fixed effects of the features Xi;
• vj(i) ∈ R, the slope random effect of the feature Zi specific to council j(i);

• ϵi ∼ N (0, σ2
ϵ ), the error term accounting for the variance in yi unexplained by the model.

3.2 Bayesian Priors and Non-Centered Parametrization

Following the Bayesian paradigm, we define prior distributions over the parameters of interest of the model to
incorporate information and quantify uncertainty. We begin with classical priors on the global standard deviations
for t, u, v, yi, which indicate how much a variable can vary at the population level, and β:

σt, σu, σv, σϵ ∼ InverseGamma(2, 1)

βf ∼ N(0, 1) for fixed effect feature f = 1, ..., F

Next, we apply non-centered parametrization. First, it supports inference, flattening out the space of parameter
values to be explored. [8] Second, it allows us to characterize the prior distribution of a parameter as a deterministic
sum of its global mean and an offset component for each level of the random effect. [2] For simplicity, we set all
global means to 0 and assume full independence between group levels.

tm(i) = 0 + σt × toffset,m(i) toffset,m(i) ∼ N(0, 1)
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vj(i) = 0 + σv × voffset,j(i) voffset,j(i) ∼ N(0, 1)

For the prior distribution of uj(i), we implement a Conditional Autoregressive (CAR) component. This captures
the spatial dependencies and accounts for the spill-over effects among the council areas. Intuitively, if house i
neighbors a premium council area, then yi will reflect part of this premium because i is physically close to the
factors that make the neighbor council area exceptionally valuable.

We represent the spatial relationships between council areas with an adjacency matrix A ∈ RJ×J , where
A[k, l] = 1 if councils k and l are adjacent, and 0 otherwise, with a forced 0-diagonal. Then, we encode the
variance-covariance structure of the prior distribution using precision matrix Q and define the joint probability
distribution of uj(i) for all j(i) as

u ∼ MultivariateNormal(0, Q−1) Q = α2[D − ρA]−1

Here, D ∈ RJ×J is a diagonal matrix holding the count of neighbors per council, while α2 and ρ are a spatial
variance and a smoothing parameter respectively. Using Brook’s theorem, Besag (1974) showed that the joint
probability distribution defined above is equivalent to the more common definition of CAR that uses the conditional
distribution uj(i)|unj

∀nj ∈ N (j(i)), where N (j(i)) is the set of adjacent council areas to j(i). [1] This is true
only when Q is symmetric and positive definite, which in turn bounds ρ between the reciprocal of the smallest
eigenvalue and the reciprocal of largest eigenvalue of A. [5] However, for simplicity, we fix ρ = 0.1 and α = 0.09.

3.3 Inference

The purpose of having one slope random effect per council area is to simplify inference. A fully specified model
with random slopes for all the five selected regressor would require estimating J × F random slope parameters,
which risks overfitting and computational instability, as well produces an unidentifiable covariance matrix.

To address this limitation and satisfy our research goal, we employ the following approach: fit F + 1 separate
models, each using a different house feature Zi for the slope random effect; then, collect the inferred coefficients
v ∈ RJ for the slope random effect across all F + 1 models and compare their variances. Note that F + 1 is the
number of house features at our disposal: Building Area, Distance, Bedroom2, Bathroom, and Car.

This approach requires some assumptions. Namely, (i) that slope random effects across different features are
uncorrelated, (ii) that month-specific intercept random effects don’t interact with slope random effects, (iii) that
fixed effects estimates β remain stable regardless of which feature has random slopes, (iv) that CAR prior spatial
relationships between councils are feature-independent, and (v) that errors are homoscedastic between the models.

We implement and fit the models with the PyMC library in Python.[7] In particular, we use the No-U-Turn
Sampler (NUTS), a Hamiltonian Monte Carlo algorithm that dynamically adjusts step sizes and trajectory lengths
to robustly explore complex, high-dimensional posterior distributions. [6] We configure the sampler with 3,000
posterior draws, 3,000 tuning steps, a target acceptance rate of 0.95 to avoid divergent transitions, and a maximum
tree depth of 15 to balance precision and computational cost.

Then, we perform the inference across four independent chains to enable consistency checks through convergence
diagnostics, including the Gelman-Rubin R̂ statistic, the effective sample size, and the Highest Density Interval
(HDI). Finally, we extract the posterior distributions from the sampler’s trace and analyze the results.

4 Results and Conclusion

4.1 Interpretation of Results

The standard deviations of the random slopes across council areas, which quantify spatial heterogeneity, along
with other metrics, are summarized in Table 1.

The largest standard deviation is observed for Distance (0.3484), indicating significant spatial variability in its
impact on house prices, followed by Bedroom2 (0.2532), reflecting differing preferences for additional bedrooms
across council areas. In contrast, Building Area has the lowest standard deviation (0.0489), suggesting a
uniform influence on property values. Moderate variability is found for Car (0.1508) and Bathroom (0.1651),
highlighting some spatial differences in their effects. The mean, minimum, and maximum values of the slope
random effect per house feature give a further insight into how the same characteristic can have effect with
opposite sign in different council areas, further supporting our spatial heterogeneity hypothesis.

4



Feature Standard Deviation Mean Minimum Value Maximum Value
Distance 0.3484 -0.2412 -0.7800 0.5370
Bedroom2 0.2532 0.5139 0.1480 1.0180
Bathroom 0.1651 0.0689 -0.1080 0.4660
Car 0.1508 0.0627 -0.0920 0.5170
Building Area 0.0489 0.0545 -0.0240 0.1760

Table 1: Standard deviations and other metrics of slope random effects for selected house characteristics.

4.2 Robustness of Estimates

Convergence diagnostics confirm the reliability of the results, with R̂ ≈ 1 for all parameters and effective sample
sizes exceeding 5,000. We proceed with validating the model assumptions to gain a deeper insight into the validity
of the results. First, we compare the means and variances of the posterior distributions of the β coefficients and
find that the differences across models are statistically insignificant, thus validating assumption (iii) (see tables 2
and 3). Then, we investigate the intercept random effects for the month (tm(i)) and for the council areas (uj(i))
and find similar robustness across models, supporting assumptions (i) and (iv) (see tables 7 and 6). Finally, we
compare global variance across models to check for homoscedastic errors, and again find supporting evidence
(see tables 4 and 5). These findings give us confidence in the results and demonstrate the existence of spatial
heterogeneity in the effects of house characteristics on prices.

Before concluding, we would like to identify future research opportunities with regards to spatial heterogeneity.
On the one hand, more nuanced models could be explored, for instance with multiple slope random effects or a
learnable precision matrix in the CAR component. On the other hand, the dimensionality of the dataset could be
expanded, including additional layers of hierarchy and additional factors affecting house prices.
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6 Appendix

Figure 2: Correlation Heatmap
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Figure 3: Boxplot and Histogram for the all variables before and after Inter Quartile Range filtering. (1/4)
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Figure 4: Boxplot and Histogram for the all variables before and after Inter Quartile Range filtering. (2/4)
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Figure 5: Boxplot and Histogram for the all variables before and after Inter Quartile Range filtering. (3/4)
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Figure 6: Boxplot and Histogram for the all variables before and after Inter Quartile Range filtering. (4/4)
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Figure 7: Scatter plots between price and all other house features.
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Figure 8: Trace plots and posterior distributions for model parameters with distance having a random slope.
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Note: for tables 2, 3, 4, 5, 6, 7, 8, when we write "{House Feature} Model" in the header we refer to the instance
of the model where {House Feature} is modeled as the slope random effect. For instance, the "Car Model" column
refers to a model where the house feature Car is modeled with a random slope v, while all the other house features
are modeled as fixed effects in β.

Mean values Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

Beta_CAR 0.047 0.039 0.051 0.055 -
Beta_DISTANCE -0.375 -0.364 -0.360 - -0.377
Beta_BATHROOM 0.062 - 0.056 0.051 0.055
Beta_BUILDINGAREA - 0.056 0.058 0.055 0.053
Beta_BEDROOM 0.577 0.560 - 0.564 0.559

Table 2: Mean values for fixed effects across models.

Standard Deviation val-
ues

Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

Beta_CAR 0.007 0.007 0.007 0.007 -
Beta_DISTANCE 0.012 0.012 0.011 - 0.012
Beta_BATHROOM 0.008 - 0.007 0.008 0.008
Beta_BUILDINGAREA - 0.006 0.006 0.006 0.006
Beta_BEDROOM 0.008 0.008 - 0.008 0.008

Table 3: Standard deviations for fixed effects across models.

Sigma Eps Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

Mean Sigma Eps 0.54 0.523 0.501 0.522 0.525
Std. Dev Sigma Eps 0.005 0.005 0.005 0.005 0.005

Table 4: Sigma Eps values across models.
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Sigma Council Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

Mean Sigma Council 0.055 0.055 0.054 0.058 0.055
Std. Dev Sigma Council 0.012 0.011 0.011 0.012 0.012

Table 5: Sigma Council values across models.

Council Parameters Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

u[0] -0.237 -0.248 -0.233 -0.253 -0.240
u[1] 0.866 0.823 0.828 0.814 0.818
u[2] 0.511 0.416 0.525 0.794 0.419
u[3] -0.623 -0.657 -0.452 -0.691 -0.608
u[4] -0.240 -0.252 -0.268 -0.256 -0.244
u[5] 0.287 0.276 0.287 0.199 0.250
u[6] -0.229 -0.232 -0.224 -0.219 -0.222
u[7] -0.611 -0.613 -0.428 -0.861 -0.584
u[8] 0.504 0.505 0.540 -0.399 0.505
u[9] 0.253 0.317 0.503 -0.108 0.290
u[10] -0.512 -0.522 -0.523 -0.574 -0.520
u[11] -0.407 -0.394 -0.336 0.297 -0.512
u[12] 0.374 0.418 0.427 0.264 0.400
u[13] -0.253 -0.252 -0.252 -0.256 -0.254
u[14] -0.445 -0.483 -0.447 -0.459 -0.450
u[15] 0.049 0.119 0.314 -0.314 0.016
u[16] 0.032 0.125 0.342 0.373 0.126
u[17] 0.412 0.417 0.404 0.521 0.424
u[18] -0.336 -0.341 -0.170 -0.583 -0.285
u[19] -0.057 -0.067 0.039 1.086 -0.179

Table 6: Council parameters u[.] for every council area, across models.

Month parameters Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

t[0] 0.001 -0.002 -0.001 -0.004 0.001
t[1] 0.076 0.078 0.070 0.085 0.061
t[2] 0.013 0.002 0.008 0.013 0.006
t[3] -0.012 -0.002 0.005 -0.017 -0.007
t[4] -0.009 -0.017 -0.025 -0.016 -0.012
t[5] -0.024 -0.023 -0.020 -0.030 -0.023
t[6] -0.063 -0.051 -0.053 -0.063 -0.054
t[7] 0.028 0.023 0.025 0.030 0.032
t[8] 0.054 0.052 0.051 0.036 0.056
t[9] -0.008 -0.020 -0.014 -0.008 -0.016
t[10] -0.039 -0.040 -0.039 -0.033 -0.033
t[11] -0.009 -0.006 0.001 -0.004 -0.013

Table 7: Month parameters t[.] for every month, across models.
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Random slopes Building
Area
Model

Bathroom
Model

Bedroom
Model

Distance
Model

Car
Model

v[0] 0.008 0.042 0.402 -0.353 0.038
v[1] 0.113 0.210 0.745 -0.303 0.207
v[2] 0.176 0.370 1.018 0.537 0.517
v[3] -0.003 -0.100 0.148 -0.307 -0.022
v[4] 0.015 0.032 0.443 -0.765 -0.020
v[5] 0.076 0.135 0.688 -0.247 0.242
v[6] 0.040 -0.008 0.421 -0.466 -0.009
v[7] -0.024 0.030 0.231 -0.230 0.010
v[8] -0.004 -0.077 0.313 0.077 0.043
v[9] 0.065 -0.029 0.259 -0.007 0.016
v[10] 0.026 -0.044 0.402 -0.545 -0.052
v[11] 0.108 0.159 0.648 0.110 -0.057
v[12] 0.046 -0.108 0.425 -0.283 0.010
v[13] 0.047 0.055 0.523 -0.463 0.071
v[14] 0.045 -0.098 0.347 -0.548 -0.025
v[15] 0.100 0.350 0.874 -0.780 0.056
v[16] 0.036 0.466 0.941 0.081 0.333
v[17] 0.105 0.016 0.542 -0.468 0.032
v[18] 0.036 -0.036 0.182 -0.248 -0.044
v[19] 0.078 0.012 0.726 0.385 -0.092

Table 8: Random slope v[.] for every council area, across models.
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