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1 Introduction

The transition to renewable energy is crucial to ad-
dress climate change. Solar photovoltaic (PV) pan-
els are an accessible solution, particularly for resi-
dential and rural areas. Estimating the potential for
solar PV power generation on rooftops is key to opti-
mizing solar energy usage and guiding investments.
This report proposes using convolutional neural net-
works (CNNs) for roof segmentation from satellite
images to assess solar energy potential.

Accurate estimates of solar energy generation
potential are essential for informed investment de-
cisions. Rooftop PV power generation depends on
factors such as roof area, slope, and azimuth. While
data like solar irradiation can be obtained from re-
sources such as PVGIS, extracting roof geometry

and suitable installation areas remains challenging.
Automating rooftop segmentation from satellite im-
agery is necessary to efficiently identify rooftops
suitable for PV installation, promoting informed in-
vestments and the adoption of renewable energy.

This work develops a deep-learning model for
automatic rooftop segmentation using CNNs. Un-
like traditional methods relying on complex fea-
ture extraction and machine learning approaches
like Support Vector Machines (SVMs), the proposed
CNN offers an end-to-end solution for feature learn-
ing. This approach builds on previous research to
determine the optimal CNN architecture for accu-
rate segmentation, particularly for rural rooftops.

Several studies have explored machine learning
for rooftop segmentation and PV potential estima-
tion. Tao Sun et al. (2022) [3] used a CNN for
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estimating solar PV power distribution on rural
rooftops, though details on the model were limited.
Eslam Muhammed et al. (2023) [1] applied SVMs
with complex feature extraction for rooftop extrac-
tion. The most relevant study by Peiran Li et al.
(2021) [2] focused on rooftop PV panel segmentation
using deep learning, providing insights into optimal
architectures and challenges. This work serves as a
key reference for data handling and model architec-
ture.

2 Problem Analysis

The data acquisition and processing began by gath-
ering high-resolution satellite imagery for Ljubljana
and Milan using the Mapbox API. We defined a
bounding box for each area of interest, visualized
it using Folium, and used Selenium to take high-
resolution screenshots. This process resulted in the
satellite images used for subsequent analysis.

Building structures were identified using Open-
StreetMap data, and processed with the JOSM ap-
plication. The GeoJSON file containing building ge-
ometries was filtered to retain only relevant rooftops
suitable for solar panel installation. However, due
to the variability in OpenStreetMap data qual-
ity—being an open-source platform—misalignment
between the satellite image and building masks was
a recurring issue. Manual adjustments were made
using Photoshop to correct this, improving the accu-
racy of alignment, which was crucial for the reliable
training of machine learning models.

Selective labeling was also an essential part of
this process. We excluded structures unsuitable for
solar panels, such as roofs with very steep slopes,
like the Duomo in Milan. We also excluded rooftops
heavily shadowed by surrounding buildings or dense
vegetation, as they were not practical for solar in-
stallations. These considerations aimed to ensure
that the dataset contained only rooftops with real
potential for solar power generation.

The processed imagery resulted in two final
maps: a 3000x3000-pixel map for Ljubljana and a
3000x1500-pixel map for Milan. We used a sliding
window approach with a step size of 25 pixels, creat-
ing approximately 15 GB of 200x200-pixel patches
from the satellite images and corresponding masks.
This provided the training data for a convolutional
neural network (CNN) intended to segment rooftops
for photovoltaic potential.

The use of OpenStreetMap was suggested in an
article by J. Fitzgerald Weaver (2019), [4] which
highlights how combining machine learning with ac-
cessible satellite data can effectively map rooftop
solar potential. Despite the manual alignment
required, these steps ensured the quality of our
dataset, enabling more accurate segmentation and
better solar potential estimates for urban rooftops.

3 Method

This section presents the methodology used to de-
velop the convolutional neural network (CNN) for
rooftop segmentation. Specifically, a U-Net archi-
tecture was chosen due to its effectiveness in seman-
tic segmentation tasks, particularly for applications
requiring precise localization, like rooftop identifi-
cation.

The U-Net model utilized in this project follows
an encoder-decoder architecture with skip connec-
tions that help retain spatial information lost dur-
ing downsampling. The input to the model is an
image of size 200× 200× 3.

The encoder consists of multiple convolutional
blocks, each involving two convolutional layers fol-
lowed by batch normalization and ReLU activa-
tions. The encoder gradually downsamples the in-
put image using max-pooling layers, extracting in-
creasingly abstract feature representations. The
bottleneck layer captures the most abstract features,
after which the decoder reconstructs the segmenta-
tion mask through transposed convolutions (upsam-
pling), combining feature maps from the encoder via
skip connections to ensure precise localization.

The output layer consists of a 1× 1 convolution
followed by a sigmoid activation function, producing
a binary segmentation mask:

ŷ = σ(Conv1×1(fdecoder)), (1)

where σ is the sigmoid activation function, and
fdecoder is the output from the last decoder block.

The model was trained using the Dice loss, which
is particularly well-suited for binary segmentation
tasks that involve class imbalance. The Dice loss is
defined as:

Ldice = 1−
2 ·

∑N
i=1 yiŷi + ϵ∑N

i=1 yi +
∑N

i=1 ŷi + ϵ
, (2)
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where yi and ŷi are the ground truth and predicted
pixel values, respectively, and ϵ is a small smoothing
term to prevent division by zero.

Dice loss was chosen because it directly opti-
mizes for overlap between the predicted and true
masks, making it highly effective in handling class
imbalance, which is common in rooftop segmenta-
tion since the foreground (roof) area is often sig-
nificantly smaller compared to the background. By
maximizing the overlap between predicted and ac-
tual segments, Dice loss improves the accuracy of
the segmentation mask, especially for small or nar-
row rooftop regions.

In addition to Dice loss, the Intersection over
Union (IoU) metric was used for evaluating model
performance:

IoU =

∑N
i=1 yiŷi + ϵ∑N

i=1 yi +
∑N

i=1 ŷi −
∑N

i=1 yiŷi + ϵ
, (3)

where ϵ is used to prevent division by zero. IoU
provides a useful measure of the accuracy of seg-
mentation by quantifying the overlap between the
predicted mask and the true label.

The training, validation, and test sets were split
geographically. The entire city of Ljubljana was
used as the training set, while Milan was used for
both validation and testing. By using different cities
for training and evaluation, this approach prevents
the model from overfitting to specific local features,
ensuring better generalization to new areas with di-
verse characteristics.

The U-Net model was compiled using the Adam
optimizer, with an initial learning rate of 1× 10−3.
The combination of Dice loss and IoU as metrics
helped ensure that the model learned to effectively
segment rooftops while focusing on maximizing the
overlap between predicted and actual regions. Ev-
erything was trained on local CPU.

4 Results

The results obtained from our roof segmentation
CNN demonstrate significant discrepancies between
the performance on the training set and the val-
idation/test sets, highlighting critical areas for im-
provement. While the training metrics were notably
high, with accuracy reaching around 95% and IoU
approximately 85%, the performance on the valida-
tion set was considerably worse. Validation accu-
racy remained below 80%, and IoU hovered around

50%, indicating a lack of generalization. A similar
trend was observed in the test set, further under-
scoring the model’s limitations in handling unseen
data.

This performance gap suggests that the model
overfits the training data, capturing patterns spe-
cific to plain roofs, which constituted the majority
of the training set. However, it failed to general-
ize to more complex roof structures, such as sloped
roofs, which are common in real-world scenarios.
This limitation greatly impacts the practical util-
ity of the model, as its focus on plain roofs renders
it ineffective for broader applications. Addressing
this overfitting and improving the model’s capabil-
ity to segment diverse roof types is critical for future
iterations.

One of the most significant challenges observed
in the results is the model’s bias toward detect-
ing plain roofs while failing to adequately segment
sloped roofs. This limitation severely impacts the
model’s utility, as sloped roofs are prevalent in many
urban and rural settings. Literature, such as the
work by Peiran Li et al. (2021), discusses similar
challenges, emphasizing the influence of roof orien-
tation on segmentation performance. Different roof
inclinations and orientations, particularly those in-
fluenced by latitude and satellite angle, require spe-
cialized handling that our current model does not
address adequately.

Moreover, our dataset’s limitations contributed
to this issue. Training exclusively on images from a
specific region likely resulted in the model’s inability
to generalize to diverse roof types and orientations.
Expanding the dataset to include masks from mul-
tiple European cities could significantly enhance the
model’s robustness and adaptability.

As noted in prior research, segmentation models
for roof detection often struggle with generalization
due to regional variations in architectural styles and
roof orientations. Developing separate models for
different latitudes, or incorporating region-specific
augmentations, could mitigate this challenge. How-
ever, such an approach requires substantial compu-
tational resources and diverse data, which were un-
available during this project.

Another critical issue was the computational en-
vironment. The training was conducted on a CPU
due to technical constraints related to data manage-
ment on Kaggle, which severely limited the train-
ing process. Training a deep learning model like a
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CNN on a CPU is notably inefficient, resulting in
extended training times and potentially suboptimal
convergence. Due to time limitations, the model
was trained for fewer epochs than planned, which
might have hindered its ability to achieve better per-
formance.

5 Experiment

While training the model, we developed a module
that can be used with the trained models to facil-
itate practical applications. By providing latitude
and longitude coordinates, the module can gener-
ate a segmentation map of rooftops and estimate
the potential placement of solar panels. Using tools
such as PVGIS, users can calculate the solar power
output based on the panel placement identified by
the segmentation model. This functionality allows
for an estimation of the potential power generation
for a given architectural structure, providing valu-
able insights for renewable energy planning.

6 Conclusions

This study focused on developing a CNN-based
model for rooftop segmentation with potential ap-
plications in solar panel placement and energy es-
timation. While the model demonstrated promis-
ing performance on the training data, the results
highlighted critical challenges, particularly in gen-
eralizing to unseen data and accurately segmenting
diverse roof types.

A key area for improvement is the masking pro-
cess. For more accurate segmentation and a better
understanding of roof orientations, we propose en-
hancing the dataset with masks that include not
only rooftop boundaries but also information about
azimuthal orientation. One potential method is to
assign different colors to roofs based on their ori-
entation. This approach could help distinguish be-
tween roof slopes and improve the accuracy of solar
panel placement estimation.

Moreover, to ensure the model performs well in
diverse environments, it is essential to expand the
dataset to include rooftops from various architec-
tural styles and geographic locations. Incorporat-
ing urban and rural areas will make the model more
robust and widely applicable. Employing data aug-
mentation techniques, such as rotating images to

simulate different azimuths, can further enhance the
model’s capability to handle diverse scenarios.

7 Appendix

Figure 1: This is the labeled city of Milan

Figure 2: This is the labeled city of Ljubljana
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Figure 3: 200x200 pixel mask example for the tain-
ing data

Figure 4: 200x200 pixel satelite example for the
taining data

Figure 5: Example of output from our model
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