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Abstract

We examine the alignment between
deep learning models and human expert
reasoning for pneumonia diagnosis in pe-
diatric chest X-rays. We train four CNN
architectures (AlexNet, VGG-16, ResNet-
50, InceptionNet-V1) on 5,216 images and
compare their saliency maps against con-
sensus annotations from 14 medical ex-
perts using Intersection over Union (IoU)
and Pointing Game metrics. While pre-
trained models consistently outperform
non-pretrained variants, with ResNet-50
achieving the best accuracy (94.87%),
diagnostic performance does not corre-
late with explainability. VGG-16 pro-
duces the most expert-aligned saliency
maps (22.19% IoU, on par with inter-
expert agreement), while ResNet-50’s su-
perior accuracy corresponds to worse in-
terpretability. Our findings demonstrate
that high classification accuracy alone
is insufficient for clinical interpretability,
highlighting the need for evaluation frame-
works that jointly consider both predic-
tive performance and human-interpretable
explanations in medical Al. Our code is
available on GitHub!.

1 Introduction

Deep learning has achieved state-of-the-art perfor-
mance in medical image analysis, particularly in
tasks such as disease classification [9, 10]. How-
ever, the opacity of its decision-making remains

“Equal contribution, the ordering is alphabetical.

a barrier to clinical adoption: medical profession-
als demand transparency to verify that predictions
are grounded in medically relevant evidence [3].

Figure 1: Saliency Map Example. Top row
shows the original X-ray and a raw expert anno-
tation. Bottom row displays CAM for VGG-16
(left) and ResNet-50 (right).

This study assesses the alignment of four CNN
architectures—AlexNet [5], VGG-16 [15], ResNet-
50 [2], and InceptionNet-V1 [17]—with human ex-
perts for pneumonia classification, using saliency-
based explanation techniques [11].

We train few variants of each architecture to
perform binary classification of X-ray images. We
explore training from scratch or fine-tuning from
ImageNet [1] checkpoints, as well as adapting the
classification head with a Global Average Pooling
layer [6] or not.

"https://github.com/davide-beltrame/medimg-saliency-benchmark
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We generate visual explanations of the best
models’ predictions using Class Activation Map-
ping (CAM) [19] and Gradient-weighted CAM
(Grad-CAM) [13]. Then, we ask a range of medi-
cal experts to annotate diagnostically relevant re-
gions. We aggregate these annotations into one
consensus map per input image, and compare with
the models’ maps using Intersection over Union
(IoU) and Pointing Game (PG) metrics.

In terms of diagnostic accuracy, we find that
pretrained models consistently outperform their
non-pretrained counterparts across all architec-
tures. In terms of explainability, we observe that
the most accurate classifier does not align best
with expert reasoning, and some high-performing
models exhibit poor interpretability.

Our findings show that diagnostic accuracy
alone is an insufficient proxy for explainability
and highlight the need for developing evaluation
frameworks that jointly consider both predictive
performance and interpretability. Achieving trust-
worthy Al in medical imaging requires explicit op-
timization for human-interpretable explanations,
not merely high classification accuracy.

Table 1: Annotations. Statistics and expert
agreement metrics.

Test Images 50
Annotations (Valid) 318 (281)
Annotations per Image 5.62
Unique Annotators 14
Non-trivial Consensus Maps 50
Active Pixels per Annotation (avg.) 9.4 %
Expert-Expert ToU 23.32%
Expert-Random ToU 3.29%
P-value < 0.001

2 Problem Analysis

We source pediatric chest X-ray images—showing
signs of interstitial pneumonia, often diffuse and
non-localized—from a previous study investigating
image-based deep learning to identify medical di-
agnoses [4]. In particular, we obtain 5,856 images
labeled as either pneumonia or normal. We follow
a similar data split as the original work: 3,875
pneumonia and 1,341 normal images for training;
390 pneumonia and 234 normal images for test-
ing. The original validation set contains only 16
images, which we consider insufficient, thus we re-
allocate 10% of the training set for validation. We
simplify the task to binary classification, disre-
garding the original distinction between bacterial
and viral pneumonia.

The main challenges include class imbalance,
limited dataset size, and potential dataset-specific
artifacts. We hypothesize that CNNs can achieve
high accuracy and that fine-tuned models will out-
perform scratch-trained ones, with saliency maps
meaningfully aligning with expert annotations.

3 Method

3.1 Model Development

We implement four CNN architectures: AlexNet
(baseline), VGG-16 (deeper traditional architec-
ture), ResNet-50 and InceptionNet-V1 (advanced
models). For each architecture, we evaluate a ver-
sion trained from scratch and one initialized from
ImageNet pretraining [1].

To reduce overfitting, we apply data augmen-
tation by randomly rotating, scaling, translating,
and color-jittering each input image. Additionally,
with 50% probability, we apply edge sharpening
using the transformation 2 - I — G, where [ is the
original image and G is a blurred version obtained
with a 3 x 3 uniform kernel. The hyperparameters
used for augmentation (see Section 4.1) are either
empirically tuned or adopted from PyTorch de-
fault settings [8]. We do not apply normalization,
as it consistently degrades performance across all
models.

To address the dataset imbalance (approx-
imately 75% pneumonia class), we implement
weighted random sampling and ensure each mini-
batch contains an equal proportion of both classes.

For saliency generation, we use CAM [19] (ex-
ploiting the final convolutional layer and classifi-
cation weights), and Grad-CAM [13] (using gradi-
ents flowing into the final convolutional layer). We
normalize all generated maps to [0,1] and binarize
them using a fixed threshold of 0.5. All maps are
up-sampled to 224 x 224 pixels for fair comparison.

While Grad-CAM is architecture-agnostic and
compatible with any CNN, CAM requires the
model to end with a Global Average Pooling
(GAP) layer [6] followed by a linear classifier.
This structure is already present in ResNet-50
and InceptionNet-V1, while AlexNet and VGG-16
must be adapted accordingly. We evaluate both
the original and the modified versions of these ar-
chitectures.

3.2 Expert Alignment

To investigate model-expert alignment, we com-
pare the saliency maps produced by the trained
models with a consensus map derived from expert
annotations (see Table 1).
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Table 2: Chosen Models Performance. Confidence intervals at 95% are estimated on the test set
with 1000 bootstrap samples. We highlight in bold the best results overall.

Model Adapted Params. Pretr. Acc. F1 AU-ROC Spec.

AlexNet Yes 2.56M Yes 90.34 +2.24 9272 + 179 96.72 + 1.13 76.40 + 5.06
VGG-16 Yes 14.7M Yes 91.46 +2.24 93.50 +1.78 97.93 £ 096 79.85 +5.03
InceptionNet-V1 - 12M Yes 91.84 +2.24 93.79 +1.76 98.06 + 097 80.37 +5.19
ResNet-50 - 23.50M Yes 94.87 + 1.68 96.00 + 1.39 98.24 + 1.00 88.86 + 3.86

We invite medical experts to annotate a ran-
domly sampled subset of 50 pneumonia-positive
images from the test set, marking regions they
considered relevant for diagnosis via a web-based
interface (see Figure 9, 10, 11).

We assess annotation quality by measuring
inter-expert agreement using pairwise IoU scores,
and comparing the average to a baseline derived
from expert-random annotation pairs. To gener-
ate random annotations, we create binary grids
matching expert annotation density and upsam-
ple them (see Figure 2). We use a Mann-Whitney
U test on the distribution of pairwise IoU scores
to test the null hypothesis that the expert-expert
agreement scores come from the same distribution
of the expert-random ones.

To construct the consensus map for each test
image, we compute the pixel-wise average of the
collected annotations and binarize this averaged
map using a fixed threshold.

Model-expert alignment is evaluated using the
Intersection over Union (IoU) and Pointing Game
(PG) metrics. IoU measures the overlap between
the binarized saliency map and the consensus
map, while PG checks whether the most activated
pixel in the saliency map falls within the consen-
sus region. To limit redundancy, we evaluate these
metrics only on one model variant per architec-
ture.

4 Experiments

4.1 Model Development

We train all models for 10 epochs (batch size 64)
with early stopping after 3 epochs without vali-
dation improvement. We use AdamW optimiza-
tion [7] (B2 = 0.95 [18]), gradient clipping (norm
0.5)[14], and one-cycle learning rate scheduling
[16] (max 10~%, 30% warm-up).

The parameters for data augmentation are re-
ported in Table 5. All images are downsampled
to 224 x 224 pixels and normalized to [0, 1] before
processing.

4.2 Expert Alignment

Our 14 annotators range from medical students
to experienced radiologists (see Appendix A, Fig-
ure 3). On average, each image received 5.62 an-
notations (see Appendix A, Figure 4).

As shown in Table 1, inter-expert agreement is
significantly above chance, validating the overall
quality of the annotations (see also Appendix A,
Figure 5).

We generate consensus maps by averaging the
annotations and applying a fixed binarization
threshold of 0.5. For every test image, at least
50% of annotators marked overlapping regions.

5 Results

Our experiments show that pretrained mod-
els consistently outperform their non-pretrained
counterparts across all architectures (see Ap-
pendix A Table 4). This highlights the effective-
ness of transfer learning: features learned from
natural images transfer well to medical imaging
tasks.

ResNet-50 with pretraining achieves the best
overall performance. However, without pretrain-
ing, its performance drops sharply, underscor-
ing the importance of proper initialization for
deeper architectures when training data is limited.
VGG-16 and InceptionNet-V1 also benefit sub-
stantially from pretraining, while AlexNet shows
relatively stable performance even when trained
from scratch, suggesting that simpler models may
generalize better with limited data.

For consistency, we select the models imple-
mented with the GAP layer followed by the linear
classifier (see Table 2). The parameter savings in
GAP-based versions are substantial and the per-
formance trade-off is marginal.

In terms of explainability (see Table 3), VGG-
16 consistently achieves the highest IoU scores, in-
dicating that its saliency maps most closely align
with expert annotations—approaching the level of
inter-expert agreement.
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Table 3: Model-Expert Agreement. Entries show IoU and PG between model-generated saliency
maps and expert annotations, along with p-values. The threshold for map binarization is fixed at 0.5.

Model GradCAM CAM Random

IoU PG IoU PG ToU PG
AlexNet 9.08 0.000 28.0 0.000 6.78 0.756 12.0 0.006 5.93 - 0.0 -
InceptionNet-V1| 16.33 0.000 38.0 0.000 16.33 0.000 38.0 0.000 5.36 - 0.0 -
ResNet-50 11.46 0.000 20.0 0.001 10.84 0.000 20.0 0.001 4.99 - 0.0 -
VGG-16 19.6 0.000 32.0 0.000 22.19 0000  40.0 0.000 4.96 - 0.0 -

However, in terms of PG, which captures the
model’s ability to localize the most diagnosti-
cally relevant point, InceptionNet-V1 and VGG-
16 lead under CAM, while InceptionNet-V1 scores
highest under Grad-CAM. This suggests that
InceptionNet-V1 is particularly effective at pin-
pointing critical regions.

In contrast, AlexNet performs poorly across
both metrics and saliency methods, with its IoU
under CAM nearly equivalent to random perfor-
mance.

6 Discussion

High diagnostic accuracy does not guarantee inter-
pretability: the best performing model (Resnet-
50) is not the most aligned, and a model with rea-
sonable classification accuracy (AlexNet) showed
poor alignment.

We also observe a meaningful divergence be-
tween IoU and PG scores for more aligned models,
likely driven by architectural differences. These
patterns, exemplified in Figure 1, emphasize the
need for multi-dimensional evaluation frameworks
that consider both accuracy and alignment with
expert reasoning.

While no standard benchmark exists for our
task, our IoU scores are competitive with prior
work [12].

7 Conclusions

This research contributes to explainable Al in
medical imaging by systematically assessing how
CNN-based pneumonia detection models align
with expert reasoning.

We find that strong diagnostic performance
does not guarantee interpretability, suggesting the
need to develop methods that explicitly align
decision-making with clinical expertise.

A preliminary analysis suggests that physicians
produce more consistent annotations than stu-
dents, underscoring the need to examine the role
of expertise in establishing reliable ground truth.

As our study focuses on a homogeneous dataset
of pediatric chest X-rays, future work should as-
sess the generalizability of these findings across
diverse patient demographics, anatomical regions,
and pathological conditions.

Our threshold sensitivity analysis (see Ap-
pendix A, Figures 6 and 7) highlights the need
to explore different thresholding methods in ex-
plainability evaluations.

We recommend: (1) collecting more annota-
tions and exploring different aggregation strate-
gies; (2) expanding the range of models to measure
the correlation between accuracy and alignment;
(3) testing additional saliency methods and bina-
rization techniques; and (4) incorporating dual-
view radiographs (frontal and lateral).

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia
Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009
IEEFE conference on computer vision and pat-
tern recognition, pages 248-255. Ieee, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pages 770-778, 2016.

Andreas Holzinger, Chris Biemann, Con-
stantinos S Pattichis, and Douglas B Kell.
What do we need to build explainable ai sys-
tems for the medical domain? arXiv preprint
arXiw:1712.09923, 2017.

Daniel S Kermany, Michael Goldbaum, Wen-
jia Cai, Carolina CS Valentim, Huiying
Liang, Sally L Baxter, Alex McKeown,
Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable

diseases by image-based deep learning. cell,
172(5):1122-1131, 2018.



Do AI and Human Experts See Pneumonia the Same Way?

[5]

[10]

[11]

[12]

Alex Krizhevsky, Ilya Sutskever, and Geof-
frey E Hinton. Imagenet classification with
deep convolutional neural networks.  Ad-
vances in neural information processing sys-
tems, 25, 2012.

Min Lin, Qiang Chen,
Yan. Network in network.

arXiw:1312.4400, 2013.

and Shuicheng
arXiv preprint

Ilya Loshchilov and Frank Hutter. Decoupled
weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep
learning library. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages
8024-8035, 2019.

Pranav Rajpurkar, Jeremy Irvin, Kaylie
Zhu, Brandon Yang, Hershel Mehta, Tony
Duan, Daisy Ding, Aarti Bagul, Curtis Lan-
glotz, Katie Shpanskaya, et al. Chexnet:
Radiologist-level pneumonia detection on
chest x-rays with deep learning.  arXiw
preprint arXiw:1711.05225, 2017.

Cynthia Rudin. Stop explaining black box
machine learning models for high stakes de-
cisions and use interpretable models instead,
2019.

Wojciech Samek, Thomas Wiegand, and
Klaus-Robert Miiller. Explainable artificial
intelligence: Understanding, visualizing and

interpreting deep learning models. arXiv
preprint arXiw:1708.08296, 2017.
Adriel Saporta, Xiaotong Gui, Ashwin

Agrawal, Anuj Pareek, Steven QH Truong,
Chanh DT Nguyen, Van-Doan Ngo, Jayne
Seekins, Francis G. Blankenberg, Andrew Y.
Ng, Matthew P. Lungren, and Pranav Ra-
jpurkar. Benchmarking saliency methods for
chest x-ray interpretation. medRziv, 2021.

[13]

[14]

[15]

[16]

[18]

[19]

Ramprasaath R Selvaraju, Michael Cogswell,
Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Vi-
sual explanations from deep networks via
gradient-based localization. In Proceedings of
the IEEE international conference on com-
puter vision, pages 618626, 2017.

Noam Shazeer and Mitchell Stern. Adafac-
tor: Adaptive learning rates with sublinear
memory cost. In International Conference on
Machine Learning, pages 4596-4604. PMLR,
2018.

Karen Simonyan and Andrew Zisserman.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Leslie N Smith and Nicholay Topin. Super-
convergence: Very fast training of neural net-
works using large learning rates. In Arti-
ficial intelligence and machine learning for
multi-domain operations applications, volume

11006, pages 369-386. SPIE, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia,
Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and
pattern recognition, pages 1-9, 2015.

Mitchell Wortsman, Tim Dettmers, Luke
Zettlemoyer, Ari Morcos, Ali Farhadi, and
Ludwig Schmidt. Stable and low-precision
training for large-scale vision-language mod-
els. Advances in Neural Information Process-
ing Systems, 36:10271-10298, 2023.

Bolei Zhou, Aditya Khosla, Agata Lapedriza,
Aude Oliva, and Antonio Torralba. Learn-
ing deep features for discriminative localiza-
tion. In Proceedings of the IEEE conference
on computer vision and pattern recognition,

pages 2921-2929, 2016.



Bocconi Students for Machine Learning

A Appendix

Table 4: Models Performance. Confidence intervals at 95% are estimated on the test set with 1000
bootstrap samples. We highlight in bold the best results per model, and in bold plus underline the

best results overall.

Model Adapted # Param. Pretrained Accuracy F1 ROC AUC  Specificity
No 57M No 87.42 £ 256 90.29 £ 2.11 94.50 + 1.72 76.84 + 5.34
AlexNet Yes 91.98 +£2.16 93.75 + 1.72 97.01 + 1.08 84.60 + 4.55
Yes 9 5M No 87.48 + 2.48 90.22 £2.05 93.40 +1.88 78.98 £ 5.11

Yes 90.34 +£2.24 9272 £1.79 96.72 +1.13 76.40 £ 5.06

No 134M No 82.64 +2.88 87.53 £2.27 93.73 +£1.89 57.65 + 6.13
VGG-16 Yes 92.12 +2.09 93.87 +1.72 97.72 £ 095 84.56 + 4.34
Yes LA7M No 86.35 + 2.73 89.05 £2.33 92.46 + 2.04 82.01 +4.81

Yes 91.46 +2.24 93.50 £ 1.78 97.93 +£ 096 79.85 + 5.03

TnceptionNet-V1 ) 19M No 87.92 + 249 91.11 £1.94 96.56 + 1.30 69.14 + 5.57
Yes 91.84 + 224 93.79 + 1.76 98.06 + 0.97 80.37 £ 5.19

ResNet-50 ) 923.5M No 62.77 £369 77.02 £2.76 82.82 +3.23 0.82+1.06
Yes 94.87 + 1.68 96.00 + 1.39 98.24 + 1.00 88.86 + 3.86
Original Image True Random

.|,

Figure 2: True vs Random Annotation. Selected example to show true and randomly generated
annotation. We estimate the average number of active pixels in valid expert masks, create a small
binary grid with the same density of active pixels, upsample it via bilinear interpolation, and binarize
the result
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Distribution of Annotator Professions

Number of Annotators

!

0 - " . .
Medical Student Resident Physician Radiologist  Pneumologist
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Figure 3: Professions. The distribution of our annotators’ professions.
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Figure 4: Annotations Distribution. The number of annotations collected for each image.

Average Pairwise loU per Annotated Image
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Figure 5: Average IoU. For each image, we measure the loU between all pairs of annotations for
that image and then compute the average.
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Augmentation Type Parameter Range

Rotation a € [0,15°]
Translation t € [~22.4,22.4)?
Scaling g €[0.9,1.1]
Brightness ~v € [0.7,1.3]
Contrast § €10.7,1.3]
Saturation e €10.7,1.3]

Hue ¢ €1[0.9,1.1]

Table 5: Data augmentation strategy and parameter ranges.

All Models loU vs. Binarization Threshold (CAM)
—e— ANFull
—e— VGG Full
—e— RN Full
IN Full

020

0.15

Average loU

0.10

0.05

00 02 04 06 08
Saliency Binarization Threshold

Figure 6: Model-Expert IoUs vs. Thresholds (CAM). IoU between model saliency maps and
expert annotations as a function of the binarization threshold applied to CAM outputs.

All Models loU vs. Binarization Threshold (GRADCAM)

—e— ANFull
—e— VGG Full
RN Full
0.200 IN Full

0175

0.150

0125 \
h v)(///
0075 ~—

0.050

Average loU

0.025

00 02 04 06 08
Saliency Binarization Threshold

Figure 7: Model-Expert IoUs vs. Thresholds (Grad-CAM). IoU between model saliency maps
and expert annotations as a function of the binarization threshold applied to Grad-CAM outputs.
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Original (True: 1) Expert Consensus VGG CAM (Pred: 1, loU- 0.19) ResNet CAM (Pred: 1, loU- 0.09)

Al

VGG CAM (Pred: 1, loU: 0.15)

ResNet CAM (Pred: 1, loU: ©.00)

Expert Consensus
=

Original (True: 1) Expert Consensus VGG CAM (Pred: 1, loU: 0.46) ResNet CAM (Pred: 1, loU: 0.03)

Original (True: 1) Expert Consensus VGG CAM (Pred: 1, loU: 0.25) ResNet CAM (Pred: 1, loU: 0.00)

Original (True: 1) Expert Consensus VGG CAM (Pred: 1, loU: 0.02) ResNet CAM (Pred: 1, loU: 0.07)

Figure 8: Saliency Map Comparison. Visual comparison between expert annotations and model-
generated saliency maps for five pneumonia cases. For each case, from the left: original X-ray, expert
consensus annotation (green overlay), VGG-16 CAM, and ResNet-50 CAM.
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L'IA e gli Esperti Umani Vedono la Polmonite allo Stesso
Modo?

Benvenuto/a nel nostro progetto per il corso di Computer Vision all'Universita Bocconi di
Milano! Un sentito grazie dagli autori Giacomo Ciro' & Davide Beltrame per il tuo
contributo.

Il nostro obiettivo € valutare quanto le aree considerate rilevanti da un modello di
machine learning per diagnosticare la polmonite su radiografie toraciche coincidano
con quelle individuate da esperti umani.

Come esperto, ti chiediamo di evidenziare le regioni della radiografia che ritieni
determinanti per diagnosticare la presenza di polmonite (tutte le radiografie che vedrai
hanno ricevuto una diagnosi positiva di polmonite).

Confronteremo le tue annotazioni con le aree individuate dal modello per valutare il
grado di coerenza tra intelligenza artificiale ed esperienza clinica.

Istruzioni:

1. Inserisci il tuo nome e la tua professione negli appositi campi (aggiungi anche I'email
se vuoi ricevere il report finale una volta completato)

Clicca e trascina il mouse per disegnare sull'immagine

Rilascia il tasto per completare una forma

Clicca "Invia Annotazione" al termine

Le annotazioni verranno salvate automaticamente e passerai all'immagine
successiva

v

Disclaimer:

Abbiamo preparato 50 immagini che necessitano di annotazione, un numero
considerevole che richiede tempo e attenzione. Comprendiamo perfettamente i tuoi
impegni accademici e professionali, quindi ti invitiamo a completarne quante pit
possibile in base alla tua disponibilita.

Ogni annotazione viene salvata automaticamente dopo l'invio, quindi puoi interrompere
in qualsiasi momento. Nota bene che se esci e rientri, I'ordine delle immagini verra
resettato in modo randomico, quindi & probabile che dovrai ripeterne alcune.

Il tuo contributo, anche parziale, € prezioso per noi. Grazie di cuore e buon lavoro!

Ogni partecipante sara adeguatamente menzionato nel nostro report. Se preferisci
restare anonimo, inviaci una semplice email agli indirizzi che trovi in fondo alla pagina.

Figure 9: Annotation Platform. [1/3]
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Esempi

Ecco alcuni esempi su come annotare correttamente le radiografie e su quello che faremo successivamente

ey

Radiografia di un paziente con diagnosi di polmonite. Annotazione effettuata da un esperto.

...In realta fatta da Jack, quindi sicuramente fuori

posto !)
m -
Aree considerate rilevanti dal modello (GradCAM). Annotazione binarizzata per il confronto con il
maodello.

Figure 10: Annotation Platform. [2/3]
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Nome Annotatore: Inserisci il tuo nome Professione: | Studente di medicin:

Email (opzionale): La tua email (opzion:  Dimensione Pennello: 15px

Immagine: 1 di 50

Cancella Annotazione

Per qualsiasi domanda, dubbio, richesta o problema riscontrato non esitate a
contattarci:

giacomo.ciro@studbocconi.it

davide.beltrame@studbocconi.it

Figure 11: Annotation Platform. [3/3]
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