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Abstract

This paper presents a real-time so-
lution for automated pallet counting
in operational warehouses using deep
learning ensembles. Three complemen-
tary convolutional neural network back-
bones, EfficientNet-B3, ResNet-50, and
ConvNeXt-Tiny, are adapted for multitar-
get regression, enabling simultaneous pre-
diction of total, CHEP, and EPAL pallet
counts in a single forward pass. Evalu-
ated on a proprietary dataset of 130 an-
notated warehouse images, the best indi-
vidual model (EfficientNet-B3) achieves a
mean absolute error (MAE) of 1.40 pal-
lets for total count, while the ensemble
reduces this to 1.15 pallets and improves
type-specific R? to 0.950 for EPAL pallets.
The system processes 224 x 224 pixel im-
ages on commodity hardware while pro-
viding interpretable predictions through
Grad-CAM visualizations, meeting indus-
trial requirements for accuracy, speed, and
explainability in supply chain automation.

1 Introduction

Pallets serve as critical infrastructure in global lo-
gistics, with over 80% of goods transported using
standardized pallet systems. In Europe, CHEP
(blue) and EPAL (brown) pallets are subject to
strict rental contracts requiring accurate reconcil-
iation between suppliers and logistics providers.
Manual counting remains widely used despite be-
ing error-prone, labor-intensive, and costly.

*Equal contribution, the ordering is alphabetical.
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Figure 1: Grad-CAM — ConvNeXt-Tiny

This paper addresses industrial pallet count-
ing through deep learning-based computer vision.
Traditional automated methods, such as template
matching and handcrafted feature detection, lack
robustness in complex warehouse environments
characterized by varying lighting conditions, oc-
clusions, and pallet stacking patterns. We pro-
pose an ensemble of diverse CNN backbones that
provides accurate, fast, and explainable multi-
target regression for simultaneous prediction of to-
tal, CHEP, and EPAL pallet counts.

Our contributions include: (i) a multi-target
regression framework that enforces logical con-
straints between pallet counts, (ii) an ensemble ap-
proach combining three complementary CNN ar-
chitectures, (iii) comprehensive evaluation on real
warehouse imagery, and (iv) explainability anal-
ysis through Grad-CAM visualizations for indus-
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trial adoption.

The code, trained models, and result vi-
sualizations for this project are available on
GitHub: https://github.com/Simo-dg/cnn-pallet-
counting. Due to privacy constraints, the anno-
tated dataset is not publicly released.

2 Related Work

Modern CNN-based methods dominate the field,
employing either object detection followed by
counting or direct regression from image to count.

Regression-based approaches are particularly
suitable for pallet counting due to the high de-
gree of occlusion in stacked configurations and the
uniform appearance of pallet types.

However, existing solutions typically focus on
single-target counting and lack the multi-class
specificity required for pallet type differentiation
in industrial applications.

3 Methodology

3.1 Problem Formulation

Given an input image x € RIXWX3  the
model predicts a vector of pallet counts y =
[UcHEP, @EPAL}T. The total count is computed as
Jtotal = YCHEP + YEPAL, enforcing the logical con-
straint yiotal = YcHEP + YEPAL directly in the ar-
chitecture.

The loss is computed over all three components
using SmoothL1 [5]:

3
. 1 .
L(y,y) =3 > SmoothLl(yi — %) (1)
=1

where ¥ = [Yiotal, YcHEP, YEPAL] L, and

0.5x2

|x| — 0.5 otherwise

if 1
SmoothL1(x) = { if o] <

Note that although only CHEP and EPAL counts
are predicted directly, the total count is included
in the loss via its derived estimate.

3.2 Backbone Architectures

We select three architecturally diverse CNN back-
bones to maximize ensemble diversity:

EfficientNet-B3 employs mobile inverted
bottleneck convolution (MBConv) and squeeze-
and-excitation attention [13, 8], together with
compound scaling [16], offering strong perfor-
mance per FLOP ratio suitable for resource-
constrained deployment.

ResNet-50 utilizes residual connections to im-
prove gradient flow in deep networks, with its con-
ventional convolution structure being particularly
effective for extracting texture features from pal-
let wood surfaces and identifying distinguishing
marks [6].

ConvNeXt-Tiny modernizes CNN design
with depthwise convolutions, LayerNorm, and
GELU activations [10, 1, 7], providing efficient
feature hierarchies while maintaining competitive
performance with significantly fewer parameters.

Each backbone is modified by replacing the fi-
nal classification layer with a regression head con-
sisting of global average pooling followed by a fully
connected layer outputting two values (CHEP and
EPAL counts).

3.3 Data Augmentation Strategy

The augmentation pipeline includes: random re-
sized crops (0.8-1.0 scale), horizontal flips, affine
transformations (£15° rotation, =+0.1 transla-
tion), color jitter (brightness +0.2, contrast £0.2),
Gaussian blur (kernel size 3-7), JPEG compres-
sion artifacts (quality 70-100), coarse dropout
(max 8 holes, 16x16 pixels), and ImageNet nor-
malization [3]. Augmentations are implemented
with Albumentations [2]; we also adopt Cutout-
style masking [4].

Given the small dataset size, augmentation
plays a crucial role in improving generalization —
a trend commonly observed in vision tasks with
limited data.

3.4 Training Procedure

Models are trained using the AdamW optimizer
[11] with a one-cycle learning rate schedule [15]. A
one-cycle learning rate schedule is applied with a
maximum learning rate of 1 x 10~3 over 15 epochs.
The learning rate is updated at each training step
based on the number of batches per epoch. Hyper-
parameters were manually selected based on em-
pirical performance. Model checkpoints are saved
based on the lowest validation MAE to ensure op-
timal generalization performance.

3.5 Ensemble Strategy

The final prediction is obtained by averaging the
outputs of the three individual models:

3
. 1 .
Yensemble = g z; Yi (2)
1=

where y; is the output vector predicted by the
i-th model for an input image, containing the pre-
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dicted CHEP and EPAL counts. The total count
is then reconstructed as their sum. This ensemble
approach improves overall accuracy by leveraging
architectural diversity across the backbones, con-
sistent with evidence on deep ensembles [9].

For efficient deployment, the three models can
be executed in parallel using separate CUDA
streams.

3.6 Explainability via Grad-CAM

Grad-CAM (Gradient-weighted Class Activation
Mapping) visualizations are extracted from the
final convolutional layers of each backbone [14]
to highlight image regions that most influence
the regression predictions. This provides inter-
pretable insights into model decision-making pro-
cesses, crucial for industrial adoption and debug-
ging systematic failure modes.

4 Experimental Setup

Dataset A proprietary dataset of 130 warehouse
images was collected across multiple months and
varying operational conditions, including different
lighting scenarios, camera angles, and pallet stack-
ing configurations. Each image contains manual
annotations for total pallet count, CHEP pallet
count, and EPAL pallet count verified by the au-
thor. The dataset is split 80/20 for training and
validation, with stratification to ensure balanced
count distributions.

Evaluation Metrics Models are evaluated us-
ing Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and coefficient of determi-
nation (R?). MAE provides intuitive interpreta-
tion of counting accuracy, RMSE penalizes large
errors, and R? measures the proportion of variance
explained by the model.

Implementation Details Experiments are
conducted on a Google Colab instance equipped
with an NVIDIA T4 GPU (16GB VRAM), using
PyTorch 1.12 [12] and CUDA 11.6. All models are
initialized from ImageNet pretrained weights [3]
and fine-tuned on the pallet counting task. Input
images are resized to 224 x 224 pixels to match
pretrained model expectations.

5 Results

5.1 Quantitative Performance

Table 1 presents total pallet count performance
across all models. The ensemble achieves the best

performance with MAE of 1.151 pallets, represent-
ing a 18% improvement over the best individual
model (EfficientNet-B3).

Table 1: Total pallet count performance compar-
ison. Results measured on validation set.

Model MAE RMSE R?

EfficientNet-B3  1.401  1.845  0.840
ResNet-50 1.918 2400 0.729
ConvNeXt-Tiny 1.696  2.519  0.702
Ensemble 1.151 1.634 0.875

Table 2: CHEP pallet count performance compar-
ison. Results measured on validation set.

Model MAE RMSE R?

EfficientNet-B3  0.991 1.537  0.938
ResNet-50 1.682 2454 0.843
ConvNeXt-Tiny 0.721  1.033  0.972
Ensemble 0.918 1.457 0.945

Table 3: EPAL pallet count performance compar-
ison. Results measured on validation set.

Model MAE RMSE R?

EfficientNet-B3  1.009 1.407  0.941
ResNet-50 1.475 2.043 0.875
ConvNeXt-Tiny 1.426  2.394  0.829
Ensemble 0.857 1.295 0.950

The results, measured on the validation set,
demonstrate that different architectures excel at
different pallet types: ConvNeXt-Tiny achieves
the lowest MAE for CHEP pallets (0.721), while
EfficientNet-B3 performs best for EPAL pallets
(1.009). The ensemble effectively leverages these
complementary strengths.
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5.2 Explainability Analysis

Model 1 - Image 2

Figure 2: Grad-CAM — EfficientNet-B3

Model 2 - Image 3

Figure 3: Grad-CAM — ResNet-50

Figures 1, 2, and 3 show Grad-CAM heatmaps
for three different models applied to similar
pallet scenes. EfficientNet-B3 focuses sharply
on lower pallet rows and vertical stacking
edges, indicating reliance on spatial alignment
and shadows. ResNet-50 demonstrates concen-
trated attention on central surface textures and
CHEP-specific color markings, suggesting strong
type-discrimination ability. ConvNeXt-Tiny ex-
hibits a broader receptive field, activating over
the full stack area including background shad-
ows—highlighting robustness to occlusions and
lighting variance. These diverse attention patterns
across architectures further justify the ensemble
strategy, as they capture complementary seman-
tic and spatial cues.

6 Discussion

Ensemble Benefits The ensemble approach
demonstrates clear advantages over individual
models, with architectural diversity providing im-
proved robustness across different pallet configura-
tions and lighting conditions. The parallel infer-
ence strategy maintains computational efficiency
while leveraging the complementary strengths of
each backbone.

Explainability Insights Grad-CAM visualiza-
tions reveal that successful models focus on se-
mantically meaningful regions: pallet edges for
boundary detection, corner hardware for struc-
tural identification, and color markers for type
classification. This interpretability is crucial for
industrial deployment, enabling operators to un-
derstand and trust model predictions.

Limitations The current dataset is limited to
130 images from a single warehouse facility, po-
tentially limiting generalization to diverse opera-
tional environments. The constrained dataset size
necessitates extensive data augmentation and may
not capture the full variability of real-world pallet
counting scenarios.

Future Directions Future work should expand
the dataset across multiple warehouse facilities
and operational conditions. Integration of RGB-D
sensors could provide depth information to better
handle occlusions. Temporal context from video
sequences could improve counting accuracy in dy-
namic warehouse environments.

7 Conclusion

This work presents a comprehensive solution to
automated pallet counting that addresses three
critical industrial requirements simultaneously:
accuracy, efficiency, and interpretability. Our
ensemble approach, combining EfficientNet-B3,
ResNet-50, and ConvNeXt-Tiny architectures,
achieves superior performance with an MAE of
1.15 pallets for total count and exceptional type-
specific accuracy (R? = 0.950 for EPAL pallets),
while maintaining real-time inference capabilities.

Technical Contributions The multi-target re-
gression framework represents a significant ad-
vancement over traditional single-output counting
methods, enabling simultaneous prediction of to-
tal, CHEP, and EPAL pallet counts with architec-
tural constraints that ensure logical consistency.
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The ensemble strategy effectively leverages archi-
tectural diversity without computational penalty
through parallel inference.

Industrial Impact The system offers inter-
pretable outputs via Grad-CAM visualizations
[14], making it suitable for deployment in oper-
ational warehouse settings. Although latency was
not formally measured, the use of lightweight CNN
backbones and efficient inference pipelines sug-
gests practical feasibility for near real-time appli-
cations.

Methodological Framework This work es-
tablishes a methodological framework that ex-
tends beyond pallet counting to general industrial
object counting and inventory management tasks.
The combination of multi-target regression, en-
semble learning [9], and explainable AI [14] pro-
vides a template for deploying deep learning so-
lutions in mission-critical industrial environments
where accuracy, speed, and interpretability are es-
sential.
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