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Abstract

Crowd counting via density map es-
timation is highly sensitive to a model’s
receptive field, which determines how
much spatial context informs each pre-
diction. We present a controlled study
on ShanghaiTech Parts A (dense) and B
(sparse) that isolates the effect of recep-
tive field by varying depth in UNet-style
encoder—decoder architectures with pre-
trained VGG19 and ResNet50 backbones.
Ground-truth density maps are generated
with geometry-adaptive Gaussians, and
we evaluate both count- and pixel-level er-
rors (MAE/RMSE). Our modified UNet
outputs half-resolution density maps and
uses skip connections after max pool-
ing to focus the analysis on receptive-
field behavior.  Results show a clear
data—architecture match: on dense Part
A, VGG-D4 attains the best count accu-
racy, benefiting from strong local feature
extraction; on sparse Part B, ResNet-D4
performs best, leveraging a larger effec-
tive receptive field to suppress false pos-
itives in empty regions. Deeper variants
generally improve density fidelity across
both families. We also report that naive
patch-based augmentation increases sam-
ple count but harms validation generaliza-
tion due to distribution shift.

1 Introduction

Crowd counting plays a pivotal role in public
safety, urban planning, and autonomous systems
by estimating the number of individuals in a scene.
A widely adopted formulation of this task is den-
sity map estimation, where a model predicts a
spatial distribution of crowd presence rather than

*Equal contribution, the ordering is alphabetical.

discrete counts [4]. However, performance in such
tasks is often highly sensitive to the receptive field
of the network, which governs how much spatial
context a neuron can leverage when interpreting
complex visual scenes [2]

In this work, we investigate how varying the
depth of models ( then the receptive field) impacts
the quality of density maps and, consequently, the
final crowd count accuracy. We use the Shang-
haiTech dataset and adapt it to a density esti-
mation setting using established Gaussian kernel
techniques. We adopt an encoder-decoder struc-
ture inspired from UNet [3] on which we mount
custom encoding blocks of two different categories:
one with encoding blocks taken by ResNet50 and
one with encoding blocks taken from VGG19.

Our aim is to empirically characterize how re-
ceptive field configurations influence density map
fidelity and crowd counting performance, offer-
ing insights into architectural decisions for vision
tasks involving spatially distributed labels. Our
analysis is tied to the results reported on the
ShanghaiTech dataset, particularly Parts A and
B, as documented in recent benchmarks [1].

2 Problem Analysis

The crowd counting task, particularly in dense
and unstructured scenes, poses several challenges:
large variations in scale, severe occlusions, and un-
even crowd distributions make direct regression
approaches prone to errors. Density map esti-
mation offers a spatially-aware solution, but its
quality is closely tied to the network’s ability to
capture local features and global context elements
governed primarily by the receptive field.

We hypothesize that models with larger recep-
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tive fields will better handle sparse scenes and pro-
vide smoother, more coherent density maps due
to their capacity to integrate broader context [6].
In contrast, smaller receptive fields might better
preserve local density peaks in congested areas
but could struggle with scattered or large-scale
crowds. By varying receptive field sizes—through
changes in architectural depth—we aim to explore
these trade-offs systematically.

3 Methodology

Our approach investigates how receptive field
size affects the performance of crowd density
map estimation and counting. We construct a
controlled experimental setup using the Shang-
haiTech dataset and design multiple network vari-
ants differing in their receptive field configura-
tions.

3.1 Dataset preparation & tentative aug-
mentation

We utilise the ShanghaiTech dataset, which in-
cludes two parts: Part A, composed of images
from highly congested internet scenes, and Part
B, with relatively sparser images from Shanghai
streets. We then follow the standard preprocess-
ing pipeline by converting each annotated head
point into a density map via geometry-adaptive
Gaussian kernels, as proposed in [4]. This adap-
tation enables spatially aware supervision rather
than scalar count regression, which has been
shown to improve robustness in dense crowd sce-
narios [5].

We also tried augmenting the dataset by tak-
ing image patches (possibly overlapping to grant
of fixed size, and producing ground truth maps ac-
cordingly. This allows to increase the size of our
dataset ~ 6x the original image count. However,
the model trained on the augmented dataset had
severe issues generalizing to the validation images,
as generated densities where not representative of
the validation dataset.

3.2 ResNetb0 & VGG19

Modules ResNetSkipl and VGGSkipl modules
adapts a pretrained encoders to produce a density
map at half the input resolution. These blocks are
made by extracting the pretrained models’ weights
and adapting them to our desired input/output
sizes. ResNetb0 comprises approximately 25.6
million parameters and features a receptive field
of 483 pixels, enabling it to capture broad contex-
tual information efficiently. In contrast, VGG19

contains about 144 million parameters with a re-
ceptive field of 212 pixels.

3.3 UNet Structure

The pretrained blocks are composed in an
encoder-decoder fashion, with MaxPooling layers
reducing the dimensionality of the features. The
encoder, on the other hand, works through a series
of double 3 x 3 convolutions preceded by a Bilin-
ear Upsamling layer. We instatiate a series of skip
connections between encoder and decoder blocks
at the same level.

Differently from classical UNet architecture, we
made a couple of design choices due to both trial
and error on a validation subset and due to the
specific goal of our study. First, we decided not to
instatiate a full decoding part of UNet, therefore
ending up with density maps at half resolution.
Second, all skip connections starting from the en-
coder are given after the MaxPooling layer, dif-
ferently from the original architecture that takes
them before MaxPooling, just after ReLU activa-
tion.

3.4 Receptive Field in Convolutional Neu-
ral Networks

In Convolutional Neural Networks (CNNs), of an
output neuron refers to the region of the input
image that influences the value of that neuron. It
quantifies how much of the input is visible to a
particular output activation. For a given layer [,
the receptive field R; can be recursively computed
from previous layers as follows:

Ri=Ri_1+ (ki—1) 511

where k; is the kernel size at layer [, and j;_1 is
the jump (i.e., the effective stride) from the input
to layer [ — 1. The jump is updated at each layer
as:

Ji = Ji—1- 81

where s; is the stride at layer [. The initial recep-
tive field Ry is 1, and jo = 1.

Filter size increases the receptive field linearly:
larger kernels allow each neuron to aggregate in-
formation from a wider area of the input. We
utilized two backbone modes with different initial
receptive fields and augmented their depth to fur-
ther investigate how these differences affect per-
formance in pixel-wise density map estimation and
counting.
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4 Experiments and Metrics

We define several model variants depend on depth
in the encoder and decoder blocks which affect sig-
nificantly the receptive fields of the final layers of
the modls (cf. [2]).

We report both count errors and pizelwise er-
rors, using:
MAE & RMSE: Count MAFE is computed by
summing each density map and taking the mean
absolute difference between predicted and ground-
truth counts.
Count RMSE is the root of the mean squared dif-
ference between total predicted and ground-truth
counts.
Pizel MAFE is the average absolute per-pixel er-
ror between predicted and ground-truth density
maps.
Pizel RMSE is the root of the mean squared per-
pixel error.
Baselines are produced to give a sense of the good-
ness of the models: Mean is the goodness of pre-
dicting a total count which is the average across
the dataset, spreaded across the images’ pixels;
Zeros is the result of predicting an empty density
map.

5 Results and Discussion

The performance differences between VGG and
ResNet on Parts A and B can be attributed to
the distinct characteristics of each dataset subset
and the architectural properties of the networks:

Part A - Dense Crowd Scenarios: Part
A contains images with high crowd density where
people are closely packed and often overlapping.
In these scenarios, VGG’s architecture proves
more effective because: Dense crowds requires
more precise feature extraction at multiple scales,
also VGG’s more direct feature extraction path-

way and of course its higher number of parameters
is better suited for capturing the local patterns
and textures that distinguish individual people in
crowded scenes. Finally, the high density means
that local contextual information is more impor-
tant than long-range spatial relationships.

Part B - Sparse Crowd Scenarios: Part B
contains images with lower crowd density and
more empty zones, where ResNet’s superior per-
formance can be explained by: Larger Recep-
tive Field: ResNet’s residual connections and
deeper architecture provide a significantly larger
effective receptive field, allowing the network to
capture broader spatial context. Empty Zone
Handling: The presence of large empty areas
in Part B images requires the model to under-
stand global scene context to avoid false positives
in empty regions.

The depth analysis shows that deeper networks
(D4) generally perform better, with VGG-D4 ex-
celling on Part A and ResNet-D4 on Part B,
suggesting that increased model capacity benefits
both architectures when matched to appropriate
scenarios.

These results highlight the importance of
matching network architecture to dataset charac-
teristics: VGG excels in dense scenarios requiring
fine-grained local analysis, while ResNet’s broader
receptive field and residual learning are advanta-
geous for sparse scenarios requiring global context
understanding.

6 Conclusion

In this work, we investigated the impact of re-
ceptive field size on crowd density map esti-
mation by systematically varying the depth of
VGG19 and ResNet50-based encoder-decoder ar-
chitectures.  Our experiments on the Shang-
haiTech dataset reveal that architectural choice
should be tailored to crowd density characteris-
tics. The findings highlight the trade-off between
local precision and global context aggregation and
receptive field characteristics in density map esti-
mation and counting.
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Table 1: Crowd counting performance by various models and baselines on ShanghaiTech Parts A and

B. Best results are highlighted in bold.

Metric Baseline VGG ResNet

Mean Zeros D2 D3 D4 D2 D3 D4
Part A
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MAE (pixel) 1.0e—3 1.0e—3 | 8.71le—3 6.95e—3 5.99¢—3 |1.047e—2 5.77e¢—3 6.38¢—3
RMSE (pixel) | 4.0e—=5  5.0e—5 | 1.7e—2 1.39e—2 1.22e—2 | 6.7e—5 1.2e—2 1.39e—2
Part B
MAE (count) 71.95 123.56 123.10 21.85 37.01 56.19 37.98 19.82
RMSE (count)| 88.48 155.87 147.25 26.25 42.76 65.84 42.85 24.81
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Figure 1: Density map visualization for learned filters VGG-D4 on ShanghaiTech Part A.
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: Density map visualization for learned filters in ResNet-D4 on ShanghaiTech Part B.
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Figure 3: Density map visualization for learned filters in VGG-D4 and problems in last output on
ShanghaiTech Part B.
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