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Abstract—Credit scoring in microfinance is challenging due to
limited data and highly imbalanced repayment patterns. In this
study, we adopt a Siamese network approach to predict default
and compare its performance with Random Forest, CatBoost,
Gradient Boosting Decision Trees, and Gaussian Process Classi-
fier on a subset of the Kiva Crowdfunding for Good dataset. Mod-
els were evaluated under both balanced (50:50) and imbalanced
(95:5) conditions using metrics including Accuracy, F1, ROC
AUC, PR AUC, Log Loss, Brier Score, and KS Statistic. Under
balanced splits, Random Forest achieved the highest overall per-
formance (ROC AUC 0.90, PR AUC 0.90), while its performance
degraded significantly under extreme imbalance. The Siamese
network (representation-based) and Gaussian Process Classifier
(probabilistic) maintained robustness, achieving the highest PR
AUC in imbalanced settings (0.81 and 0.82, respectively). These
results highlight the potential usefulness of Siamese networks for
credit scoring in highly imbalanced microfinance datasets.

Index Terms—Microfinance, Credit Scoring, Low-Data
Regime, Representation Learning, Siamese Network, Machine
Learning

I. INTRODUCTION

Global poverty and financial exclusion persist as major
barriers to economic development. Nearly 700 million peo-
ple—=8.5% of the global population—live in extreme poverty,
subsisting on less than $2.15 per day, and roughly 3.5 billion
people (44%) fall below a $6.85 daily threshold [1]]. These
populations are disproportionately concentrated in climate-
vulnerable regions, with over 80% of the 1.4 billion un-
banked adults facing heightened exposure to economic and
environmental shocks [4]. Limited access to formal financial
services exacerbates vulnerability, particularly for populations
with scarce credit histories.

Microfinance institutions (MFIs) have attempted to address
this gap by providing small loans, savings, and insurance
products [21]. However, MFIs face persistent operational con-
straints, including high transaction costs, limited sustainability,
and unreliable borrower creditworthiness [29]. Traditional
credit scoring methods frequently fail for clients with sparse
financial histories, resulting in elevated default rates and
restricted coverage. While recent digital initiatives—such as
MyBucks Malawi Limited—demonstrate the potential of data-
driven approaches [6] [10], existing machine learning (ML)
methods largely assume abundant, structured data, limiting
applicability in low-data microfinance contexts [22].

This study addresses these limitations by proposing a credit
scoring framework specifically tailored for small-scale MFIs

operating under data scarcity and class imbalance. By lever-
aging representation learning techniques, including Siamese
networks and transformer-based encoders, our framework in-
tegrates alternative data sources to enhance predictive accuracy
and operational efficiency. Unlike conventional approaches,
this framework is designed to remain robust when borrower
data are sparse or heterogeneous, directly targeting the critical
challenges that have hindered ML adoption in microfinance.

II. RELATED WORK
A. Traditional Credit Scoring in Microfinance

Microfinance institutions (MFIs) have historically faced
unique challenges in credit scoring compared to conventional
banks. Most relied on the experience and intuition of credit
officers rather than formal scoring systems, and when scor-
ing systems existed, they typically used only basic financial
indicators [S[]. Schreiner [5]] categorizes microfinance credit
scoring into statistical approaches, which estimate default risk
from historical loan performance, and judgmental approaches,
which rely on credit officer expertise. The latter has been
dominant, reflecting the scarcity of reliable historical data. Em-
pirical studies indicate that institutions adopting formal credit
scoring generally outperform those relying solely on manual
assessments [ 19].However, traditional models systematically
exclude borrowers with limited or no credit histories—the very
populations microfinance aims to serve [28]]. This limitation
highlights the need for alternative methods capable of evalu-
ating creditworthiness with sparse or unconventional data.

B. Machine Learning for Microfinance Credit Scoring

Recent research demonstrates that machine learning (ML)
techniques can substantially improve microfinance credit scor-
ing, especially for borrowers with limited credit histories.
Comparative studies consistently show that ML models outper-
form conventional approaches, with ensemble methods such
as Random Forests and Gradient Boosting achieving some of
the highest predictive accuracy [23]], [24]]. Neural networks
and boosting algorithms have produced improvements in AUC
exceeding 15 percent over traditional statistical models, while
hybrid approaches combining multiple models often yield
the strongest overall performance. Despite these advances,
most ML applications assume relatively large, well-structured
datasets—conditions rarely met in typical MFIs. For instance,
a study employing contrastive learning and domain adaptation



achieved an AUC of 0.714 and profits of 458,686, but it used
a dataset of over 311,000 loan applications [[16]. Most MFIs
operate with far smaller datasets, underscoring the need for
approaches that perform reliably in low-data regimes.

C. Alternative and Emerging Approaches

Alternative data and new methods are improving microfi-
nance credit scoring. Mobile usage, digital payments, psycho-
metrics, social media, and utility records can raise accuracy
by up to 12%, with mobile data alone reaching 89%. Psy-
chometric tools assess traits like integrity and risk attitudes,
expanding access for those without formal histories. Evidence
from Ethiopia and Peru shows greater inclusion—especially
for women and SMEs—without harming repayment, though
results vary by context. [|17]]

Incorporating social and environmental factors aligns scor-
ing with MFI missions, but tools like Social NPV and MEPI
face standardization challenges. Group lending sustains re-
payment rates above 90%, [30] though MFIs often shift to
individual loans for established clients. [] Digital and mobile
scoring is growing rapidly, lowering costs and enabling instant
approvals, yet field studies in Kenya and Tanzania report de-
fault rates of 47-56%, underscoring transparency and adoption
issues. [31]]Overall, these innovations are context-dependent,
requiring adaptation and supportive regulation. [[7] [25] [26]

D. Research Gap

Despite these advances, most existing approaches either
rely on large datasets or are context-specific, limiting their
generalizability in typical MFI settings. There is a clear need
for methods that utilise the predictive power of machine
learning , while remaining robust in low-data environments.
This work addresses this gap by developing a scalable credit
scoring framework tailored for small-scale MFIs, leveraging
machine learning to improve accuracy and financial inclusion.

III. SIAMESE NETWORK FRAMEWORK
A. Motivation

Conventional classifiers in credit scoring rely on absolute
class boundaries and require large labeled datasets. In contrast,
our setting involves a deliberately constrained sample (1,000
loans) to simulate a low-data regime. To address this, we adopt
a Siamese network architecture, originally proposed for metric
learning [8]], which learns a representation space by modeling
pairwise similarity.

A key advantage of this approach in few-shot learning (FSL)
contexts is its ability to mitigate overfitting. Instead of trainin,
on N raw examples, a Siamese network constructs N(N%l
pairs by comparing every sample with every other sample,
effectively augmenting the dataset [27]]. This combinatorial
pairing greatly increases the number of training signals and
reduces the risk of overfitting under limited data. At the
same time, the model functions as a representation learning
mechanism: it extracts discriminative low-dimensional features
while discarding redundant information in the input data [27].
These properties make Siamese networks particularly well-
suited for low-resource credit scoring.
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Fig. 1: Architecture of the Siamese network: two identical
encoders map loan records into embeddings, followed by
distance computation and contrastive loss training.

» Similarity Index

Heural
Matwork 2

Input 2

B. Architecture and Objective

The Siamese network consists of two identical encoder
branches, fy(-), sharing parameters 6. Given two loan records
z; and x;, the encoders produce embeddings:

hi = fo(zi), hj = fol(x;).
Weight sharing ensures that both inputs are mapped into

a consistent feature space. To quantify similarity, we use
Euclidean distance:

D(hi, hj) = [[hi = hylla-

Pairs are constructed such that ¥y = 1 if two loans share
the same repayment class (e.g., both “regular”), and y = 0
otherwise.

In practice, these pairs are generated by randomly selecting
combinations of loans from the dataset. For each anchor
loan, a partner is chosen either from the same repayment
class to form a positive pair or from a different class to
form a negative pair. This random pair sampling ensures a
diverse set of relationships for the network to learn from,
while still covering all possible pairwise interactions in the
NV=1) combinatorial space. By converting a limited set
of individual loans into a much larger set of training pairs,
the model effectively amplifies the amount of informative
training signals, which is particularly beneficial in low-data
environments. This approach allows the Siamese network to
learn more robust and generalizable embeddings, capturing
subtle patterns of similarity and dissimilarity across borrowers.

The network is trained with a contrastive loss [?]:
£ =y D(hi,hy)? + (1 - y) - max (0,m — D(hi, hy))’,

where m is a margin hyperparameter. This objective enforces
compact clusters for loans with the same repayment outcome
while maximizing separation between dissimilar ones.

A schematic overview of the Siamese network used in this
study is presented in Fig. [T} The diagram illustrates the dual-
branch structure, weight sharing, embedding generation, and
distance computation between loan pairs.



C. Embedding Utilization

After pretraining the encoder, we freeze its parameters and
use the learned embeddings for downstream classification. K-
Nearest Neighbors (distance-based), was chosen as the main
classifier.

D. Evaluation Protocol and Statistical Testing

Performance was assessed on the held-out test set using
widely adopted credit scoring metrics. Accuracy is reported for
completeness, but greater emphasis is placed on metrics that
better capture discriminative ability (ROC AUC, PR AUC),
calibration (Log Loss, Brier Score), and class separation (Kol-
mogorov—Smirnov statistic), which are standard in financial
risk modeling [?].

All models were evaluated through a unified evaluation
framework. This framework encompassed assessment of em-
bedding quality via KNN classification, computation of the
standard performance metrics listed above, bootstrap resam-
pling (n = 1000) to estimate 95% confidence intervals for each
metric, and confusion matrix analysis to characterize classifi-
cation errors. The same evaluation methodology was applied
consistently across all experimental conditions, including both
the balanced 50:50 and imbalanced 95:5 data splits.

E. Rationale and Limitations

This design directly addresses the challenges of low-data
credit scoring: (i) pairwise training increases the number of
effective training examples, mitigating overfitting, (ii) con-
trastive loss encourages generalization across borrowers with
heterogeneous features.

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

We used the Kiva Crowdfunding for Good dataset from Kag-
gle, which contains 671,205 loan records across 19 attributes.
To simulate a low-data regime typical in microfinance, 1,000
records were sampled and split into training (640), validation
(160), and testing (200) sets.

Columns directly tied to loan funding (e.g., id,
funded_amount, loan_amount, currency,
partner_id, and timestamps) were excluded to avoid
leakage. The target variable was binarized: regular repayments
(weekly or monthly) were encoded as 0, and non-regular
(bullet or irregular) as 1. Retained predictors include loan
activity, sector, country, term length, borrower count, borrower
gender, and loan issue date. Borrower gender was encoded as:
0 (male-only), 1 (female-only), 2 (unknown), and 3 (mixed).

High-cardinality = categorical  features (activity,
sector, country) were represented using ordered
target encoding, while numerical features were standardized
and missing values imputed. (replaced with estimated values)
Figure [2] illustrates the sectoral distribution of loans, showing
the dominance of Agriculture, Food, and Retail.

Two evaluation scenarios were considered: (i) a balanced
50:50 split between repaid and defaulted loans, and (ii) an
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Fig. 2: Distribution of loans across economic sectors in the
sampled dataset.

imbalanced 95:5 split reflecting real-world repayment distribu-
tions. Importantly, all models were tested and validated on the
same dataset constructed from the 50:50 sampling to ensure
comparability across approaches.

B. Model Performance

Table |I] reports results under the balanced 50:50 split.
Random Forest achieved the strongest performance across
nearly all metrics, with CatBoost and GBDT close behind.
Representation-based method Siamese+KNN lagged slightly
but remained competitive.

[t]

However, microfinance repayment data is rarely balanced.
To reflect the real-world distribution, we constructed a 95:5
dataset. Table |l summarizes performance under this extreme
imbalance. Unlike the balanced setting, traditional ensembles
degraded severely (Random Forest ~56.5%, CatBoost ~58%),
while representation-based model demonstrated robustness
(Siamese+KNN at 72.0%)

Figure [3] illustrates this trend across a continuum of splits
from 75:25 to 95:5, showing that Siamese degrades more
gracefully than ensemble methods. Splits from 75:25 to 95:5
are shown because the trend is symmetrical, so this range
sufficiently illustrates how Siamese degrades compared to
ensembles without redundancy

The Receiver Operating Characteristic Area Under the
Curve (ROC AUCQC) is a scalar metric that summarizes the
performance of a binary classifier across all possible decision
thresholds. It is defined as the probability that the classifier
assigns a higher score to a randomly chosen positive instance
than to a randomly chosen negative instance. Geometrically, it
corresponds to the area under the ROC curve, which plots the
true positive rate (sensitivity) against the false positive rate (1
— specificity). A value of 0.5 indicates performance no better
than random guessing, while a value of 1.0 represents perfect
discrimination between classes.

Results for 50:50 split can be seen on the graph ] The ROC
AUC results highlight Random Forest as the strongest per-
former (0.90), with CatBoost (0.87) and GPC (0.84) following
closely behind. Multilayer GBDT achieved a moderate score
of 0.82, while the Siamese Network + KNN lagged slightly



H Model Accuracy F1 ROC AUC PR AUC LogLoss  Brier KS H
Random Forest 0.8144 0.8148 0.8992 0.8991 0.4060 0.1302  0.6721
CatBoost 0.8001 0.7975 0.8739 0.8633 0.4483 0.1421  0.6321
GBDT 0.7949 0.7939 0.8211 0.7893 1.8102 0.2012  0.6389
Siamese+KNN 0.7750 0.7783 0.8300 0.7718 3.8410 0.1852  0.5528
GPC 0.7500 0.7475 0.8447 0.7959 0.4982 0.1628  0.5180

TABLE I: Model performance under balanced conditions (50:50 split).

H Model Accuracy F1 ROC AUC PR AUC LogLoss  Brier KS H
Siamese + KNN 0.7200 0.7705 0.7377 0.6498 8.7791 0.2786 0.4784
Random Forest 0.5655 0.6922 0.7940 0.7505 2.9202 0.3439  0.5280

CatBoost 0.5813 0.7118 0.6515 0.5904 1.3402 0.3024  0.4901
GPC 0.5655 0.6922 0.7940 0.7505 2.9202 0.3439  0.5280
Multilayered 0.6250 0.7148 0.6316 0.5664 4.8203 0.3750  0.2631

TABLE II: Performance metrics of different models under unbalanced conditions (95:5 split).
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Fig. 3: Best performing models’ accuracies over different splits
from 75:25 to 95:5.

at 0.83. These results indicate that ensemble-based models,
particularly Random Forest, are most effective at ranking
positive instances higher than negatives across thresholds.
GPC also performs well in terms of discrimination, though its
lower accuracy and F1 score suggest trade-offs in classification
at fixed thresholds. The Siamese Network’s ROC AUC is
comparable to Multilayer GBDT, but given its much poorer
calibration and high log loss, the quality of its probabilistic
ranking is less reliable. Overall, the ROC AUC analysis
reinforces the strong discriminative ability of Random Forest
and CatBoost in this dataset.

To better understand, ROC graph can be seen on[5] Based on
the ROC AUC results, the Gaussian Process Classifier (0.83)
achieved the highest discriminative performance, reflecting its
strength in modeling complex non-linear relationships and pro-
ducing well-calibrated probabilities, as also supported by our
calibration curve analysis. Random Forest (0.79) and CatBoost
(0.77) followed closely, consistent with the strong performance
typically observed in tree-based ensemble methods, which are
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Fig. 4: ROC curves for selected models under balanced 50:50
split.

well-suited for capturing feature interactions and handling het-
erogeneous data. The Siamese Network combined with KNN
(0.72) demonstrated moderate performance, indicating that
while the learned embeddings provided some separation—as
seen in the t-SNE visualization—the simplicity of the KNN
classifier limited its effectiveness compared to more sophisti-
cated ensemble or probabilistic models. Finally, the Multilayer
GBDT (0.63), despite the corrected data, underperformed sig-
nificantly, suggesting potential challenges with its architectural
complexity or hyperparameter tuning. Overall, these results
highlight the relative strengths of Gaussian Processes and tree-
based methods for this dataset, while also illustrating the repre-
sentational promise—but practical limitations—of embedding-
based approaches like Siamese networks.

However, for imbalanced Datasets, usually a more reflective
characteristic would be PR AUC. While ROC AUC evaluates
overall discrimination, PR AUC focuses on the minority class,
which is critical in imbalanced microfinance datasets.
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split.

The Precision—Recall Area Under the Curve (PR AUC) is
a performance metric that evaluates the trade-off between
precision (the proportion of predicted positives that are truly
positive) and recall (the proportion of actual positives that
are correctly identified) across all decision thresholds. It is
computed as the area under the precision—recall curve, which
is particularly informative for imbalanced datasets where the
positive class is rare. Unlike ROC AUC, which considers both
classes equally, PR AUC focuses on the classifier’s ability
to correctly identify the minority class, making it especially
relevant in applications where false negatives carry higher
costs. A higher PR AUC indicates better performance in
balancing precision and recall.

Balanced Split Precision-recall curve can be seen on [6]

In terms of PR AUC, which emphasizes performance on
the minority class, Random Forest again leads with a value of
0.90, followed by CatBoost (0.86) and GPC (0.79). Multilayer
GBDT achieves 0.78, while the Siamese Network + KNN
scores 0.77. These results underscore that Random Forest and
CatBoost not only discriminate well overall, but also maintain
strong precision-recall trade-offs in the imbalanced setting of
this dataset. GPC, while solid in ROC AUC, shows a larger
drop in PR AUC, reflecting lower effectiveness in correctly
identifying positive instances without excessive false positives.
The Siamese Network achieves only moderate precision-recall
performance, consistent with the observed overlap in its t-SNE
embeddings, which makes KNN less effective for separating
classes. Thus, Random Forest and CatBoost stand out as the
most effective models when the minority class is prioritized.

PR AUC for an unbalanced split can be seen on Fig. [7]

Based on the PR AUC results, the Gaussian Process Classi-
fier (0.82) achieved the highest performance, with the Siamese
Network + KNN (0.81) following very closely. Since PR AUC
emphasizes precision-recall trade-offs for the minority class,
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Fig. 6: Precision-Recall curves for selected models under
balanced 50:50 split.
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these results suggest that GPC’s ability to capture complex
non-linear relationships and model uncertainty provides it
with an advantage in imbalanced settings, while the Siamese
Network’s embedding approach effectively grouped minority-
class instances in a way that allowed KNN to achieve a strong
balance between precision and recall. Random Forest (0.79)
and Multilayer GBDT (0.77) performed moderately, indicating
that while tree-based models are generally robust to imbalance,
they were less effective than GPC or the Siamese Network
in optimizing the precision-recall trade-off on this dataset.
CatBoost (0.74) showed the weakest performance, suggesting
that without further class-weight tuning, its boosting procedure



struggled to prioritize minority-class recall. Importantly, con-
fidence interval analysis highlights that GPC’s performance is
likely statistically significantly higher than that of the Siamese
Network and Multilayer GBDT, while differences among
GPC, Random Forest, and CatBoost are not statistically signif-
icant due to overlapping intervals. Overall, the results indicate
that GPC and the Siamese Network stand out as the strongest
models when evaluated on PR AUC, underscoring the value
of both probabilistic modeling and representation learning
approaches in highly imbalanced microfinance datasets.

C. Calibration

A calibration curve evaluates the reliability of predicted
probabilities from a classifier. It plots the predicted probability
of the positive class on the x-axis against the observed
frequency of positives on the y-axis, typically after binning
predictions into intervals. A perfectly calibrated model pro-
duces a curve that follows the diagonal line, meaning that
predictions correspond closely to true probabilities (e.g., pre-
dictions of 0.8 correspond to 80% actual positives). Deviations
above the diagonal indicate underestimation, while deviations
below indicate overestimation. Calibration is often quantified
using metrics such as Brier score or log loss, which measure
the mean squared error or likelihood discrepancy between
predicted probabilities and actual outcomes. Well-calibrated
models are particularly important when predicted probabilities
are used for decision-making or risk assessment.
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For a balanced dataset, calibration curves (Figure [8) reveal
further distinctions between the models. Random Forest and
CatBoost are both relatively well-calibrated, with predicted
probabilities aligning closely to the diagonal, suggesting that
their outputs can be interpreted as reliable confidence scores.
GPC is also reasonably calibrated, consistent with its Bayesian
framework. By contrast, Multilayer GBDT and the Siamese

Network deviate significantly from the diagonal. In particular,
the Siamese Network + KNN shows the poorest calibration,
with its probabilities systematically misaligned with observed
frequencies, reflected also in its very high log loss (3.8410)
and elevated Brier score. This indicates that while the Siamese
embeddings capture some separation in feature space, the
probabilities derived from KNN are not reliable indicators of
true class likelihood. Overall, Random Forest and CatBoost
provide the best balance of discriminative power and calibrated
probabilities for this classification task.
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Fig. 9: Calibration curve for 95:5 imbalanced dataset.

For 95:5 split, the calibration analysis (Figure [9) highlights
clear differences across models in the reliability of their
predicted probabilities. The Gaussian Process Classifier (GPC)
shows the strongest calibration, with its curve staying closest
to the diagonal across most of the probability range. This
indicates that its probabilistic outputs are highly trustwor-
thy—for example, when the GPC predicts a probability of
0.8, approximately 80% of such cases are indeed positive.
Interestingly, despite its relatively poor AUC scores, the Mul-
tilayer GBDT demonstrates comparatively better calibration in
certain ranges, outperforming the Siamese Network, CatBoost,
and Random Forest in terms of alignment with the diagonal.
Among the tree-based ensembles, Random Forest tends to
overestimate probabilities in the mid-range, while CatBoost
shows a mix of over- and underestimation across different
ranges, both exhibiting typical calibration deviations observed
in tree-based models without post-hoc correction. The Siamese
Network + KNN performs worst in this regard: its curve lies
above the diagonal at low probability ranges (underestimation)
and below it at high ranges (overestimation), reflecting the lim-
itations of translating learned embedding distances into well-
calibrated probabilities via a simple KNN. These results are
consistent with the known strengths of Gaussian Processes in
producing well-calibrated probabilistic predictions, the mixed
calibration behavior of tree ensembles, and the inherent chal-



lenges of probability estimation in embedding—KNN pipelines.
Overall, the GPC emerges as the most reliable model for
applications where calibrated probabilities are critical.

D. Confusion Matrix

Confusion matrices (fig. and [IT) provide insight into
error distributions. Under 50:50 balance, CatBoost and Deep-
GBM maintained low misclassifications, while Random Forest
showed a tendency toward false negatives. The Siamese+KNN
model produced more false positives but preserved minority
recall.

Confusion Matrix

70

60

50

True label

- 40

30

20

Predicted label

Fig. 10: Siamese network’s confusion matrix under 50:50 split.

In contrast, under 95:5 imbalance, confusion matrices show
ensembles collapsing to trivial majority-class predictions,
while Siamesecorrectly identified non-trivial fractions of mi-
nority cases of 94/98.

E. Embedding Analysis

For a 50:50 split (Figure 1), the average intra-class
distance was 0.44, while the average inter-class distance
was 1.46, meaning same-class embeddings were over three
times closer than embeddings from different classes. Under
a 95:5 split (Figure [I3])), this separation became even more
pronounced: intra-class distance dropped to 0.19 and inter-
class distance increased to 1.80, yielding a nearly 9:1 ratio.
These results indicate that the Siamese encoder forms a highly
discriminative embedding space, where minority and majority
classes remain tightly clustered and well-separated even under
extreme imbalance, which helps explain its superior perfor-
mance over traditional GBDT models in microfinance data.

F. Ablation Studies
V. ABLATION STUDIES

To understand the contribution of individual design choices
in our framework, we conducted a series of ablation studies.
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Fig. 11: Siamese network’s confusion matrix under 95:5 split.
t-SME visualization of Siamese Embeddings (Test Set)
& - repayment_class
Q
LI
. e
- .
.
4 Lo .
"o s %
.:.0" ., :
.. .. -
2 s e
. - v -
- .
g o . .
.. -
-
-2 L]
. 1 ]
r .
LT - 'n. *
* .
s .
.

—20 -10 o 10 20
TSNE-1

Fig. 12: t-SNE visualization of Siamese embeddings under
50:50 split.

Each variant isolates a specific component or strategy, allowing
us to quantify its impact on predictive performance and
probability calibration. Metrics reported include ROC AUC,
PR AUC, F1 Score, Accuracy, Log Loss, Brier Score, and
KS Statistic, complemented by ROC, Precision-Recall, and
calibration curves for visual interpretation.

A. Ablation Overview

Each ablation serves a distinct purpose:




t-SNE visualization of Siamese Embeddings (Test Set)
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Fig. 13: t-SNE visualization of Siamese embeddings under
95:5 split. Stronger inter-class separation emerges despite
imbalance.

« Baseline vs. Removing Siamese: Evaluates whether the
encoder provides added value beyond raw features with
Logistic Regression.

« Feature Representation: Tests how encoding strategies
(scaled, one-hot, target encoding) affect model discrimi-
nation and calibration.

o Low-Data Regime: Assesses robustness when only a
fraction of the training data is available (10% in our
experiments).

o Data Augmentation: Gaussian noise and feature mask-
ing test whether synthetic variability improves general-
ization and ranking performance.

o Loan Feature Ablation: Examines the importance of
domain-specific features for repayment prediction.

o Calibration: Platt scaling, isotonic scaling, and their
combination evaluate how probability calibration affects
both ranking metrics and threshold-dependent decisions.

o Alternative Classifier: Replacing Logistic Regression
with KNN tests the sensitivity of downstream classifi-
cation to the choice of model on Siamese embeddings.

B. Results and Interpretation for Balanced split

Full results for the Balanced split dataset are shown in the
table
a) Baseline vs. Removing Siamese Encoder: Removing
the Siamese encoder leaves ROC AUC nearly unchanged
(0.853) but decreases F1 from 0.783 to 0.750. This suggests
that while the encoder does not significantly affect ranking
metrics, it improves threshold-based classification, particularly
for minority classes, as supported by the calibration curves in
Fig. ??.
b) Feature Representation: Target encoding achieves the
highest ROC AUC (0.869) and PR AUC (0.851), followed

closely by one-hot encoding. Scaled features perform slightly
worse. The ROC and PR curves in Fig. illustrate
that feature representation strongly affects discrimination,

| highlighting the importance of encoding strategies in tabular

microfinance data.

¢) Low-Data Regime: Using only 10% of the training
data reduces ROC AUC (0.846) and PR AUC (0.768), but F1

reaches the highest observed value (0.820). This demonstrates

that the Siamese encoder improves robustness in data-scarce
settings, likely by learning embeddings that preserve class
separation even with limited samples.

d) Data Augmentation: Gaussian noise and feature
masking increase ROC/PR AUC (up to 0.860/0.858) but
slightly reduce F1. This indicates that augmentation enhances

| ranking performance but introduces variability in threshold-

based classification. Figures and visualize these im-
provements.

e) Loan Feature Ablation: Removing loan-related at-
tributes severely degrades ROC AUC (0.824) and PR AUC
(0.731), while F1 and accuracy remain moderate. This con-
firms that domain-specific features are essential for reliable
repayment prediction.

f) Calibration: Calibration substantially affects the bal-
ance between ranking and threshold metrics. Platt scaling
improves F1 (0.798) and accuracy (0.800) but slightly reduces
ROC/PR AUC. Isotonic calibration improves ROC/PR AUC
(0.866/0.859) but maintains moderate F1. Combining isotonic
with Platt achieves the highest ROC AUC (0.874) and lowest
Brier score (0.141), demonstrating that calibration can be
tuned to optimize for different evaluation criteria. Calibration
curves in Fig. ?? confirm these trends quantitatively.

g) Alternative Classifier: Replacing Logistic Regression
with KNN (k=10) on Siamese embeddings results in weaker
ROC/PR AUC (0.838/0.777) and extremely poor calibration
(Log Loss = 3.156). This indicates that Logistic Regression
is a more suitable downstream classifier and that Siamese
embeddings are not universally robust across all classifiers
without tuning.

C. Results and Interpretation for Unbalanced split

Full results for the Balanced split dataset are shown in table
a) Baseline vs. Siamese Encoder: Removing the
Siamese encoder while using Logistic Regression on scaled
features increases ROC AUC from 0.757 to 0.844 but lowers
F1 from 0.760 to 0.713, indicating that the encoder mainly im-
proves threshold-based classification, particularly for minority
classes (see calibration curves in Fig. ??).

b) Feature Representation.: One-hot encoding improves
ROC AUC (0.807) and F1 (0.752) over scaled features,
while target encoding slightly reduces ROC AUC (0.727) but
maintains similar F1 (0.739), highlighting the importance of
encoding strategies in tabular microfinance data (Fig. ??).



TABLE III: Ablation Study Results for Siamese Network for balanced datset

H Experiment ROC AUC PR AUC FI Score  Accuracy Log Loss  Brier Score  KS Statistic H
Baseline - Siamese+LR (Scaled Features) 0.853 0.825 0.783 0.775 0.557 0.178 0.590
No Siamese (LR on Scaled Features) 0.853 0.837 0.750 0.760 0.476 0.159 0.560
Siamese+LR (OHE Features) 0.858 0.844 0.780 0.775 0.546 0.176 0.573
Siamese+LR (Target Encoded Features) 0.869 0.851 0.777 0.770 0.544 0.178 0.577
Siamese+LR (Low Data 10%) 0.846 0.768 0.820 0.820 0.531 0.160 0.663
Gaussian Noise Augmentation 0.860 0.858 0.765 0.760 0.578 0.184 0.559
Feature Masking Augmentation 0.858 0.842 0.775 0.770 0.555 0.178 0.563
Ablate Loan Features 0.824 0.731 0.788 0.790 0.867 0.200 0.612
Platt Calibration 0.849 0.780 0.798 0.800 0.637 0.178 0.610
Platt + Isotonic Calibration 0.849 0.780 0.798 0.800 0.502 0.161 0.610
Isotonic Calibration 0.866 0.859 0.773 0.765 0.547 0.179 0.556
Isotonic + Platt Calibration 0.874 0.847 0.753 0.780 0.575 0.141 0.556
Siamese+KNN (k=10) (Scaled Features) 0.838 0.777 0.778 0.775 3.156 0.174 0.583

¢) Low-Data Regime.: Using only 10% of the training
data with the Siamese encoder yields ROC AUC 0.829, PR
AUC 0.817, and F1 0.766, demonstrating robustness in data-
scarce settings by preserving class separation

d) Data Augmentation.: Gaussian noise and feature
masking slightly increase F1 (0.752—0.765) but do not improve
ROC/PR AUC over the baseline, indicating that augmentation
stabilizes threshold-based metrics without enhancing ranking
performance (Figs. ?? and ??).

e) Loan Feature Ablation.: Removing loan-specific at-
tributes reduces F1 to 0.658 and ROC AUC to 0.768, con-
firming the importance of domain-specific features for reliable
repayment prediction

f) Calibration.: Platt and isotonic calibration improve
F1 and Brier score, with isotonic + Platt achieving ROC
AUC 0.832 and Brier 0.162, demonstrating that calibration can
be tuned to optimize ranking versus threshold-based metrics
(Fig. ??, Table ??).

g) Alternative Classifier.: Using KNN (k=10) on
Siamese embeddings results in ROC AUC 0.738, PR AUC
0.650, F1 0.771, and very poor calibration (Log Loss 8.779),
highlighting the importance of downstream classifier choice

D. Summary

Overall, the ablation studies reveal that:

o Feature encoding and calibration have the largest effect
on ranking metrics.

o The Siamese encoder provides tangible improvements
in threshold-based classification, particularly in low-data
regimes.

o Data augmentation enhances ROC/PR performance but
has modest effects on F1.

o Domain-specific loan features are indispensable for reli-
able predictions.

o The choice of downstream classifier significantly affects
both ranking and calibration.

These insights support the design choices in our framework
and demonstrate the robustness of our approach under various
perturbations and data regimes.

VI. FUTURE WORK

While our study demonstrates the potential of representation
learning and ensemble methods for credit scoring in low-data,
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Fig. 14: ROC curves for ablation study models.

imbalanced microfinance settings, several avenues remain for
further exploration.

A. calibration

First, advanced calibration techniques could be integrated to
improve the reliability of probabilistic predictions, particularly
for embedding-based models like the Siamese Network, which
exhibited high log loss despite reasonable ROC AUC scores.
Approaches such as temperature scaling, isotonic regression,
or Bayesian post-processing could enhance confidence esti-
mates and reduce misclassification risk in high-stakes financial
applications.

B. Temporal modeling

Third, our evaluation primarily considered static models
trained on snapshot datasets. Temporal modeling of borrower
behavior, such as recurrent or transformer-based architectures,
could capture evolving repayment patterns, potentially im-
proving prediction of irregular or bullet repayments over time
and further optimizing precision-recall trade-offs in minority
classes.



TABLE IV: Ablation Study Results for Unbalanced dataset

H Experiment ROC AUC PR AUC FI Score  Accuracy Log Loss  Brier Score  KS Statistic H
Baseline - Siamese+LR (Scaled Features) 0.757 0.631 0.760 0.710 1.432 0.289 0.521
No Siamese (LR on Scaled Features) 0.844 0.840 0.713 0.605 1.010 0.303 0.551
Siamese+LR (OHE Features) 0.807 0.757 0.752 0.690 1.281 0.285 0.508
Siamese+LR (Target Encoded Features) 0.727 0.613 0.739 0.675 1.315 0.292 0.474
Siamese+LR (Low Data 10%) 0.829 0.817 0.766 0.710 0.994 0.288 0.500
Gaussian Noise Augmentation 0.746 0.633 0.765 0.720 1.374 0.279 0.486
Feature Masking Augmentation 0.751 0.648 0.751 0.695 1.378 0.288 0.477
Ablate Loan Features 0.768 0.667 0.658 0.490 1.221 0.326 0.483
Platt Calibration 0.714 0.601 0.763 0.715 1.426 0.283 0.458
Platt Calibration (alternate) 0.714 0.601 0.755 0.715 0.583 0.198 0.458
Isotonic Calibration 0.802 0.736 0.769 0.720 1.393 0.286 0.530
Isotonic Calibration (alternate) 0.832 0.773 0.759 0.765 0.645 0.162 0.530
Siamese+KNN (k=10) (Scaled Features) 0.744 0.655 0.753 0.695 8.425 0.273 0.467

Precision-Recall Curves
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learning, our framework achieves competitive discriminative
and calibration performance compared to strong baselines,
while improving recall on minority borrower classes. These
results suggest that few-shot and self-supervised methods can
mitigate data scarcity challenges faced by MFIs, supporting
more inclusive and reliable credit risk assessment.

Beyond predictive accuracy, the approach provides a flexible
foundation for extensions such as fairness-aware modeling,
domain adaptation across institutions, and meta-learning for
rapidly adapting to new borrower populations. Future research

—— Ablation -
024 Ablation -
~—— Ablation -

Ablation -
—— Ablation -
= Ablation -

Ablation -
T = Abiation -

(
(1
Siamese+LR (Gaussian Noise Augmentation) (area = 0.86)
Siamese+LR (Feature Masking Augmentation) (area = 0.84)
Siamese+LR (Ablate Loan Features) (area = 0.72)

Siamese+LR (Platt Calibration) (area = 0.77)

Siamese+LR (Platt Calibration) + Platt Calibration (area = 0.77)
Siamese+LR (Isotonic Calibration) (area = 0.86)

Siamese+LR (Isotonic Calibration) + Isotonic Calibration (area = 0.88)
Siamese+KNN (k=10) (Scaled Features) (area = 0.83)

0.0 0z 0.4 0.6 0.8 1.0
Recall

Fig. 15: Precision-Recall curves for ablation study models.

C. multi-modal features

Second, further exploration of multi-modal
features—including textual loan descriptions, borrower
social data, or network-based relationships—may complement
existing numerical and categorical attributes, allowing models
to capture richer, latent indicators of creditworthiness.

However, the method is sensitive to the construction of
positive/negative pairs and to the choice of margin m, which
may affect stability.

D. summary

In summary, future research should focus on improving
calibration, leveraging semi- or self-supervised learning,
incorporating temporal dynamics, and exploiting multi-
modal data. Such approaches may enhance both overall
discriminative performance and minority-class prediction,
ultimately leading to more accurate, robust, and inclusive
credit scoring systems in microfinance environments. This
study demonstrates the effectiveness of representation
learning, and in particular Siamese networks, for credit
scoring in low-data and imbalanced microfinance settings.
By integrating self-supervised pretraining with contrastive

will explore these directions, as well as the integration of
alternative data sources, to further enhance the robustness and
applicability of machine learning for financial inclusion.
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