I3
S
M
I-

Learning to Bet: Reinforcement Learning for Live Wagering in
Major League Baseball

Alico Redi” Sean Brindley Conlon”

Shervin Jahanbakhsh”

Stefan Uifalean”

Bocconi Students for Machine Learning, Bocconi University, Milan, Italy
{alico.redi sean.conlon shervin.jahanbakhsh stefan.uifalean}@studbocconi.it

July 16, 2025

Abstract

This project explores the use of rein-
forcement learning (RL) [6] to optimize
live sports wagering strategies in Major
League Baseball (MLB). We formulate the
betting problem as a sequential decision
process and develop an environment us-
ing historical play-by-play data combined
with bookmaker odds. Due to the lim-
ited availability of historical odds, we train
a supervised model to estimate missing
prices, enabling large-scale RL training.
We evaluate four RL algorithms—A2C,
PPO, TRPO, and DSAC—each trained
under four behavioral variants. Our
best-performing model, PPO with reward
shaping, achieves positive returns in sim-
ulation but fails to generalize fully to real
bookmaker odds. We discuss limitations
stemming from imperfect odds modeling,
market inefficiencies, and structural book-
maker advantages. Our findings highlight
the potential of RL in financial game en-
vironments and suggest future directions
for improving realism and profitability.

1 Introduction

1.1 Problem Statement

This project aims to develop an algorithm for op-
timal live wagering during MLB games. Tradi-
tional machine learning approaches to sports bet-
ting typically assess wagers before the game starts.
In contrast, we explore whether betting dynami-
cally throughout the game yields better returns.
This live setting enables game-theoretic strategies,
such as in-game hedging, that are not possible in
one-shot models. We evaluate various reinforce-

*Equal contribution, the ordering is alphabetical.

ment learning algorithms [3] to address this ques-
tion.

1.2 Motivation

Baseball is an ideal application for computational
game solving for three reasons. First, baseball has
an advanced sabermetrics community that pro-
vides many useful statistics. Second, baseball is a
discretized game. In general, each game state can
be thought of as a batter-pitcher matchup. The
batter eventually produces an outcome that tran-
sitions the current game state to the next, with
a new batter-pitcher matchup. Third, baseball is
slow. Each batter-pitcher matchup takes on the
order of a minute, providing ample time for an
optimal wager strategy to be computed.

1.3 Environmental Setup

Live betting in baseball games can be formulated
using a game-theoretic setup that naturally suits
reinforcement learning algorithms:

Player actions

e Bookmaker — At each timestep, the book-
maker must set a price for each team. This
price is a value greater than 1 that sets the
multiplier for the payout to a winning wager.

e Bettor — At each timestep, the bettor can
choose to make a wager within the limits of
their bankroll at the price set by the book-
maker or choose to do nothing.

Player incentives and strategy equilib-
rium

e Bookmaker — Must set prices at an equi-
librium to balance profitability and risk [1].

Bocconi Students for Machine Learning

e Bettor — Must devise an optimal strategy
to maximize expected utility against a best-
response bookmaker.

1.4 Data Collection

Two data sources are needed: a game state vector
and associated bookmaker prices.

Game States: Historical play-by-play records
were parsed to create a dataset covering all reg-
ular season MLB games from 2000 to 2024. Fea-
tures include basic state info (inning, outs, score),
constant info (weather, park factor), batting and
pitching stats aggregated over recent games.

Live Odds: Odds were scraped from 15 book-
makers every 5 minutes during active games in
2023-2024. These were matched to game states
and averaged to reduce noise.

Challenge: Historical odds only available for
2023-2024.

Solution: Train a regression model on avail-
able data to predict odds for earlier seasons.

2 Related Work

We refer the reader to research on RL in finan-
cial trading [3], betting markets [1], and game the-
ory applications [6]. This paper is among the first
to integrate supervised odds estimation with RL
training in a live sports context.

3 Methodology

3.1 Supervised Learning (Task 1)

To fill in missing bookmaker odds, we trained
models to predict live odds from game states.
Models:

e Ensemble Regressor: Combines XG-
Boost, Light GBM, and Random Forest. Ro-
bust to heterogeneous input features.

e LSTM: Captures temporal trends across
game states but underperforms due to slow
baseball dynamics.

Performance: Ensemble MAE = 0.04, LSTM
MAE = 0.12. The ensemble was used to generate
odds for 2000-2022 games.

3.2 Reinforcement Learning (Task 2)

Algorithms:

e A2C — Baseline actor-critic method [6].

e PPO - Stable policy optimization using
clipped updates [5].

e TRPO - Conservative updates via KL-
constraint [4].

e DSAC — Models return distribution for risk-
aware strategies [2].

4 Results

4.1 Supervised Learning

Ensemble model selected due to lower MAE.
LSTM struggled with coarse 5-minute sampling
and slow game transitions.

4.2 Reinforcement Learning

Table 1: Average net return (in units) for each RL
model and training variant.

Variant | A2C PPO | TRPO | DSAC
Verl -10.15 -7.55 -9.44 -4.65
Ver2 -6.29 -9.20 -9.14 -5.25
Ver3 -7.32 -7.29 -8.80 -4.97
Ver4 -5.07 | +0.41 -7.89 -5.29

PPO with Ver4 was the only model to yield
positive expected returns in evaluation, though
not in test. DSAC was the most stable. TRPO
and A2C underperformed, showing sensitivity to
shaping.

5 Discussion

The results of our reinforcement learning exper-
iments reveal several critical dynamics affecting
agent performance, many of which stem from the
imperfect nature of our simulation pipeline.

A particularly notable finding is that PPO with
Ver4 training (win incentive + high exploration)
achieved a positive average return on the evalua-
tion set, but still incurred a loss on the test set.
This discrepancy highlights a key limitation of our
setup: the evaluation data comes from the same
distribution used during training, where odds are
generated by a supervised learning model trained
on real bookmaker prices.

While this model performs well (mean abso-
lute error of 0.04), it is not perfectly accurate. As
a result, the RL agent is trained and validated in
an environment that only approximates the real-
world odds landscape. This mismatch means that
strategies learned on the evaluation data may ex-
ploit imperfections or patterns in the predicted
odds that do not generalize to the actual market,

Learning to Bet: Reinforcement Learning for Live Wagering in Major League Baseball

explaining the observed performance drop when
tested on real odds data.

Another important factor is that the odds used
in this environment are not fair odds. In an ideal-
ized market, the implied probabilities derived from
bookmaker prices should sum to 1. However, in
practice, the sum is greater than 1—reflecting the
bookmaker’s built-in profit margin (also known as
the vig) [1]. This structural edge ensures that even
an optimal bettor faces an uphill battle. In our
simulation, this margin persists, meaning all RL
agents are operating in a slightly adversarial envi-
ronment by design.

Furthermore, it is worth noting that the odds
used in our environment are not sourced from a
single bookmaker. Instead, they represent the av-
erage odds across 30 different betting houses. This
aggregation was necessary to stabilize noisy data
and remove outliers, but it comes at the cost of un-
derestimating the agent’s profit potential. In real-
world conditions, a bettor could selectively place
wagers at the bookmaker offering the highest odds
for a given outcome. Thus, our agents are inher-
ently conservative in their profit estimates, and
their true performance in a live multi-book envi-
ronment could be materially better.

Taken together, these points demonstrate both
the strengths and limitations of our current
pipeline:

e It enables RL training on a wide variety
of game states by extending historical data
through a supervised odds model.

e It reveals promising behaviors from algo-
rithms like PPO when incentivized with ex-
ploratory and reward shaping mechanisms.

e But it also underscores the fragility of per-
formance when transferring from an approx-
imated training environment to real-world
test data.

Future work should aim to reduce this simula-
tion gap by:

e Improving the accuracy of the odds predic-
tion model,

e Allowing agents to access the best odds
among available bookmakers, and

e Incorporating fair-odds benchmarks.

These enhancements could help build agents
that not only perform well in simulation, but also

translate their strategies effectively to real betting
markets.

6 Conclusion

We investigated RL agents for live betting in MLLB
using historical data and inferred odds. We pro-
posed a supervised learning pipeline to generate
odds where missing, enabling extensive RL train-
ing. PPO with reward shaping emerged as the
best performer in simulation but did not gener-
alize fully. This underscores the importance of
realism in training environments. RL has poten-
tial in betting applications, but success depends
on careful modeling of market dynamics.

7 Acknowledgments

We thank Retrosheet.org for play-by-play data,
and acknowledge the developers of open-source
tools used in this project.

References

[1] Sharp Betting. How betting markets work:
Odds, vig, and implied probabilities, 2021.
https://sharpbetting.com/education/how-
betting-markets-work.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter
Abbeel, and Sergey Levine. Soft actor-critic
algorithms and applications. arXiw preprint
arXiv:1812.05905, 2018.

[3] John Moody and Martin Saffell. Performance
functions and reinforcement learning for trad-
ing systems and portfolios. Journal of Fore-
casting, 17(5-6):441-470, 1998.

[4] John Schulman, Sergey Levine, Pieter Abbeel,
Michael Jordan, and Philipp Moritz. Trust re-
gion policy optimization. In International con-
ference on machine learning, pages 1889-1897.

PMLR, 2015.

[5] John Schulman, Filip Wolski, Prafulla Dhari-
wal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint
arXiw:1707.06347, 2017.

[6] Richard S Sutton and Andrew G Barto. Re-
inforcement learning: An introduction. MIT

Press, 1998.

Bocconi Students for Machine Learning

A Appendix

A.1 A. Retrosheet Notice

The information used here was obtained free of charge from and is copyrighted by Retrosheet. Inter-
ested parties may contact Retrosheet at www.retrosheet.org.

A.2 B. Project Repository

The full codebase and documentation for this project are available on GitHub at:
https://github.com/UifaleanStefan/MLBLiveBetting/tree/main. Data and trained models can
be provided if requested by emailing the authors.

A.3 B. Game State Features

Batting Features: PA, K%, BB%, wOBA, wRAA.
Pitching Features: TBF, K%, BB%, GO/TBF, FIP.

A.4 C. RL Model Descriptions

A2C: Synchronous actor-critic with advantage-based updates. Reduces variance but sensitive to
sparse rewards. PPO: Uses clipped surrogate objective to limit policy changes. Stable and efficient.
DSAC: Learns return distributions for improved robustness and risk sensitivity. TRPQO: Optimizes
policy under KL-divergence constraint. Stable but computationally demanding.

www.retrosheet.org
https://github.com/UifaleanStefan/MLBLiveBetting/tree/main

	Introduction
	Problem Statement
	Motivation
	Environmental Setup
	Data Collection

	Related Work
	Methodology
	Supervised Learning (Task 1)
	Reinforcement Learning (Task 2)

	Results
	Supervised Learning
	Reinforcement Learning

	Discussion
	Conclusion
	Acknowledgments
	Appendix
	A. Retrosheet Notice
	B. Project Repository
	B. Game State Features
	C. RL Model Descriptions

