I3
S
M
I-

Self-Awareness First

Riccardo Alberghi! Alessandro Bellinit

Flavio Caroli'! Luca Colaci! Matilde Dolfato!

'Bocconi Students for Machine Learning, Bocconi University, Milan, Italy
{riccardo.alberghi alessandro.bellini flavio.caroli luca.colaci
matilde.dolfato}@studbocconi.it

May 25, 2025

Abstract

We introduce a new approach to
Large Language Model (LLM) ensem-
bling through dynamic routing of token
generation. Instead of conventional en-
semble methods that blend model out-
puts, we propose a token-by-token rout-
ing mechanism where each token in the
response is generated by the most suit-
able model within the ensemble. We
augment each base model with a self-
awareness scoring head that predicts
the model’s suitability for generating
the next token in the sequence. This
enables dynamic expert selection dur-
ing generation. Our experiments com-
pare two model families— Llama-3.2
(1B parameters) and Qwen 2.5 (1.5B
parameters) —including general-purpose,
mathematics-specific, and medical-specific
fine-tuning, across GSM8K and MedQA
benchmarks. Results show that our en-
semble method saLM-1 effectively lever-
ages complementary strengths among spe-
cialized models, particularly with the
Qwen architecture. Here, the ensemble
achieves 20% accuracy on MedQA, while
matching the 80% performance of the
mathematics specialist on GSMS8K. We
examine both linear and non-linear rout-
ing heads and discuss the challenges in
balancing expert utilization. This work
contributes to the emerging field of LLM
ensembling by providing a framework for
context-aware model selection at the token
level, potentially offering more precise and
domain-appropriate responses than spe-
cialized models alone.

1 Introduction

The Large Language Model (LLM) industry has
recently been following two parallel paths for aug-
menting models’ capabilities: improving the archi-
tecture and scaling capacity [9]. While the former
approach requires novelty, the latter needs ever-
increasing computational resources.

In the realm of industrial applications, LLMs are
usually employed for vertical tasks requiring ad-
vanced specific knowledge and strict adherence to
company guidelines. To enforce these rules in a
systematic manner, model fine-tuning is one of the
best practices, thanks to the availability of addi-
tional related data to feed the model [12].

Question

You will receive a question and you'll have to provide a sensible answer for it, but reason a bit beforehand. All
results should be explicit.

Question: Brian has twice as many tennis balls as Frodo, who has 8 more than Lily. If Lily has 3 tennis balls,
how many does Brian have?

Let me reason about this:
Answer

Answer Tokens

Brian has twice as many tennis balls as Frodo, who has 8 more
than Lily. If Lily has 3 tennis balls, Frodo has 3 + 8 = 11
tennis balls. Brian has twice as many tennis balls as Frodo, so
Brian has 11 x 2 = 22 tennis balls.

Therefore, the answer is 22.<|endoftext|>

Figure 1: A generation example of the salLM-1
model on a GSMS8K problem. Purple tokens: gen-
eral model; orange: Med; blue: Math.

Alongside this, the industry is exploring the di-
rection of LLM ensembles [1], involving the com-
prehensive use of multiple LLMs. This is a widely
used technique in classical machine learning that
is the state of the art in Natural Language Pro-
cessing (NLP) applications [5], [1] .

In this work, we propose saLM-1, a novel LLM-

Bocconi Students for Machine Learning

ensembling method that actively routes each out-
put token generation to the model whose self-
awareness score is highest. Our hypothesis is that
through this technique we can make each model
generate the most appropriate tokens according
to the specific tasks it was trained on, hence pro-
ducing better quality output.

To this end, we first augment base models’ archi-
tecture with a simple linear projection layer, and
then with a multi-layer perceptron.

The idea is that with a projection or non-linear
transformation of the enriched representation of
the last token in the sequence, each model will
learn if it is in distribution with respect to the
context, and able to correctly generate the next
token, or if it is out of distribution and generation
should be left to other models in the ensemble. All
the code pertinent to this project can be found on
GitHub .

2 Related Work

Our work extends the collaborative-decoding
paradigm by [10]. In Co-LLM, a large "man-
ager” model treats the choice of the generator
— between itself and several smaller, domain-
specialized ”assistant” LLMs — as a latent vari-
able at every time-step. By maximizing the
marginal likelihood of the training corpus, the
manager learns without direct supervision when
to emit a token on its own and when to delegate.
The resulting system behaves like an oracle-guided
ensemble: decisions are centrally coordinated, and
there is built-in asymmetry because the manager
is substantially larger than the assistants.

In contrast, we investigate peer-level collabora-
tion. All participating LLMs have the same pa-
rameter count and identical Transformer architec-
ture (though they differ in fine-tuned expertise).
Without a privileged controller, the models must
jointly discover cooperative policies rather than
relying on top-down delegation. This shift from
hierarchical to symmetric collaboration forces the
ensemble to develop emergent negotiation strate-
gies, offering a cleaner test-bed for studying truly
collaborative decoding and opening the door to
settings where no single model can act as an ora-
cle.

Mixture of Experts, MoE The Switch Trans-
fomer architecture proposed in [3] shares some
similarities with our work, especially in the use
of a routing mechanism. We deem it appropri-
ate to clarify the distinction. Switch Transform-

https://github.com/riccardoalberghi/salM-1.git

ers scale capacity by inserting a gated layer in-
side each Transformer block, that activates one of
many feed-forward ’experts’ per token. This pro-
duces a single sparse network that must be trained
end-to-end, and whose experts are indistinguish-
able outside the gating context.

Instead, our setting keeps several fully realized
LLMs of equal size, trained (or fine-tuned) inde-
pendently, and combined only at decoding time.
Collaboration therefore happens across separate
models rather than between hidden sub-modules,
and no global sparsity gate or joint training phase
is required.

3 Methodology

3.1 Primitive Models

Our models are from two architectures: Llama-3.2
(1B parameters) by Meta [6] and Qwen-2.5 (1.5B)
by Alibaba Cloud [11].

These are chosen as they balance generation qual-
ity and dimension. For each of the two, we select
three models (all coming from the HuggingFace
community): one is a general-purpose model, one
is fine-tuned for mathematics applications and one
for medical applications:

e General-purpose:
bunnycore/Llama-3.2-1B-General-lora_model
and Qwen/Qwen2.5-1.5B

e Math-specific:
axel-datos/Llama-3.2-1B_gsm8k_full-
finetuning and Qwen/Qwen2.5-Math-1.5B

e Med-specific:
Johhny1201/llama3.2_1b_med QA 2 and
Arthur-77/QWEN2.5-1.5B-medical-finetuned

Our model choice is most importantly tied to the
models’ tokenizers. Our current architecture can
only deal with minor changes between tokenizers,
as we pick one to encode for all models (a deeper
dive in the matter can be found in Section 4).
Several additional factors determine our choice of
models, such as availability, nature and quality of
the datasets used for fine-tuning and performance.
Also, the generation quality of the ensemble model
heavily relies on the capabilities of the primitive
models, but the computational resources at our
disposal also constrain it.

3.2 Training Data

We leverage publicly available datasets on Hug-
gingFace. First, we process the GSM8K dataset

https://huggingface.co/bunnycore/LLama-3.2-1B-General-lora_model
https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/axel-datos/Llama-3.2-1B_gsm8k_full-finetuning
https://huggingface.co/axel-datos/Llama-3.2-1B_gsm8k_full-finetuning
https://huggingface.co/Qwen/Qwen2.5-Math-1.5B
https://huggingface.co/Johhny1201/llama3.2_1b_med_QA_2
https://huggingface.co/Arthur-77/QWEN2.5-1.5B-medical-finetuned
https://github.com/riccardoalberghi/saLM-1.git

Self-Awareness First

[2], a large collection of high school-level math
problems with extensive reasoning provided to-
gether with answers. The dataset was formatted
in a 2-column manner, one providing the problem
and the other providing the reasoning and the fi-
nal answer.

We perform a similar preprocessing on MedQA
[7], a large collection of multiple-choice questions
taken from the medical board exams in English.
Again, the dataset is formatted in a question
column, containing the question and available op-
tions, and an answer column, containing the cor-
rect answer. Both datasets are publicly available
on HuggingFace at colal3/medqa_formatted and
colal3/gsm8k_formatted.

Notice that our format provides explicit introduc-
tions to the parts of the question/answer by the
addition of ” Question: ...”, ” Options: ...” and
” Reasoning: ...” markers, as well as a more for-
mal introduction to the correct answer through
the formula ” The correct answer is: ...”. This is
done to provide the models with more context.

4 saLM-1 : Self-Aware Language Mod-
els (Ensemble)

saLLM-1 is an ensemble of pre-trained lan-
guage models sharing the same architecture
but differing in their fine-tuning. To maintain
consistency in tokenization and label alignment
across the ensemble, all submodels employ a sin-
gle, shared tokenizer with a common vocabulary,
as mentioned above. We only integrate models
whose backbones and vocabularies coincide be-
cause a uniform token set is essential for com-
puting our joint loss. As we will explain later,
this loss relies on a weighted aggregation of each
submodel’s token probabilities, which would be
ill-defined if their vocabularies diverged. Consult
Appendix A to inspect the full tokenizer matching
analysis.

Each model’s architecture is augmented by attach-
ing a head that learns the model’s self-awareness
of its suitability for predicting the next token. Ide-
ally, at each decoding step, we dynamically select
the submodel that is most likely to be in distribu-
tion for the current context.

4.1 Self-Awareness Score

Let M = {Mj,...,Mj)s} denote our set of M
submodels. For each submodel M,,, we compute
a self-awareness score apny[b,t] € R at batch index
b and token position ¢. This score estimates the
probability that M, is in-distribution and there-

fore reliable for next-token prediction. Crucially,
this differs from taking the highest softmax prob-
ability within a model’s own vocabulary distribu-
tion: a high softmax value may reflect overcon-
fidence on out-of-distribution inputs, whereas au,,
explicitly predicts whether the model ”"knows” the
current input.

4.2 Head Architecture

A ScalarProjectionHead is attached to each
model’s last hidden layer (dimension H), produc-
ing the raw score s,,[b,t]. We train two types of
heads, one non-linear and a linear one.

The linear head consists of just a layer R — R,
producing s,,[b, t].

The non-linear head consists of:

1. First projection: a linear layer R” — R
(with D = 256 by default), then batch nor-
malization, ReLU activation, and dropout.

2. Second projection: a linear layer RP —
RP/2 (default 128), then batch normaliza-
tion, ReLU activation, and dropout.

3. Final scalar output: a linear layer
RP/2 5 R, producing s, [b, t].

Each head is trained jointly with the rout-
ing network to predict per-token self-awareness,
enabling dynamic expert selection during genera-
tion.

4.3 Routing (Switching) Method

At each time step (b,t), we compute raw self-
awareness logits {sm[b,t]}}_, from each sub-
model’s projection head (see Section 4.2). We nor-
malize these via

exp(sm[b, t])

m[b,t] = ’
p [t] Z%zleXp(sm’[bvt])

yielding a categorical distribution over M. The
submodel with the highest p,,[b,t] is selected to
emit the next token.

4.4 Loss function

To train the head we use the binary cross-entropy
loss between the true token distribution and a
combined estimated distribution. This is the
weighted average of the distributions estimated
by each base model, with weights being pre-
normalization self-awareness levels for each base
model.

Bocconi Students for Machine Learning

Let M be the number of submodels. For each
input batch of size B and sequence length T', de-
fine:

e pm € REXT: routing probability for sub-
model M,,, with S>M_ p,.[b,#] = 1 for all
b,t.

o 2, € REXTXV: per-token softmax probabil-
ities from submodel M,,, over a vocabulary
of size V.

e yc{l,...,V}B*T: ground-truth token IDs,
with ignore index ~ marking padding or
masked positions.

We form the mizture distribution over tokens:

M

P(zy=v|bt) = Y pm[b,t] zm[b,t,0].

m=1

The negative log-likelihood (NLL) over non-
ignored positions yields:

L —_— 1
NLL = —
Zb,t Lys,e # 7]

x Y log(P(x =y | b))

byt:yn, 7Y

To promote balanced expert usage, we add an en-
tropy regularizer on the routing distributions:

1
N > bi Lyos # 7l

M
x> > pmlbt)logpmlb,t).

b,typ, 1 #y m=1

H(p) =

The combined loss is:
L = LNLL —)\H(p),

where A controls the strength of entropy regu-
larization. In practice, we add a small ¢ (e.g.,
10719) inside logarithms for numerical stability. If
a batch contains only ignored positions, we define
L = 0 to preserve gradient flow without affecting
the objective.

4.5 Training process

We train the mixture model end-to-end with
gradient-based methods, optimizing the Perfect
Alignment Loss. Each epoch proceeds as follows:

1. Data Preparation: we tokenize input
phrases with a common tokenizer to pro-
duce input IDs x € ZB*T. Then, we con-
struct next-token labels by right-shifting:
Yot = Xpi1 for t < T, and set yp7 = 7.
Finally, we mask padding positions to ~.

2. Forward Pass: first, each submodel m
computes logits £,, € REXTXV then sets
Z, = softmax(,,). After, each routing head
produces raw scores s, € RPXT setting
Pm = softmax({s1,...,sn}) across m.

3. Loss Computation: we align sequence
lengths and mask positions to ignore, then
compute L as above.

4. Backward Pass & Update: we backprop-
agate through submodels and routing head,
then update parameters via an AdamW op-
timizer [8].

5. Logging & Validation: every N steps, we
log the training loss, perplexity, and routing
statistics, more precisely:

e Activation counts: frequency each sub-
model is most probable.

o Mean routing probability: average pp,
across tokens.

4.6 Evaluation methods

We test the ensemble model on a subset of the
datasets. For each example, the ensemble model
is provided with the question column of the
dataset, and asked to reason about task and pro-
vide an answer starting with a specific sentence
(e.g. ?The answer is”). We perform prompt engi-
neering with a trial-and-error approach (the final
prompt is visible in the code). This is an attempt
to force the prompt into generating a Chain of
Thought (CoT), as it is shown that it allows the
model to generate more confident and, in general,
better answers [4].

More specifically, the questions in the GSMS8K
dataset require the model to understand the prob-
lem, break it into steps, and solve it, providing the
final answer. We evaluate this task through the
math _verify library, provided by HuggingFace to
evaluate LLMs on math reasoning. By providing
the library with the model-generated answer and
the ground truth, we obtain the correctness of the
model’s output.

For the MedQA dataset, we prompt the models
with questions and the list of possible answers, in-
dexed by letters. Then, the models have to reason
about the question and provide both the answer
and the associated letter. We parse the output
through a custom Regex, matching a variety of
possible answer formats, including deviations from
the required one. Finally, we confront the scraped
answer with the ground truth to obtain the accu-
racy score of the model.

Self-Awareness First

4.7 Differences between generation and
training

Let us clarify a critical difference between the pro-
cesses of training and generation. When training,
we create a combined token probability distribu-
tion, due to constraints given by the form of our
loss function. Then, the token to be generated is
sampled from this combined probability. On the
other hand, during generation, we switch between
models by taking the argmax over self-awareness
scores.

Tralnlng Process

Figure 2: Differences between behavior during
training vs generation.

5 Results and Discussion
We evaluate models on 50 questions from the

training set and test each model separately.

5.1 Llama with non-linear heads

Table 1: Accuracy of Llama-3 Ensemble and In-
dividual Models on GSM8K and MedQA Bench-

marks

Model MedQA GSMSK
saLM-1 12.0% 4.0%
Llama-3 2-1B 22.0% 28.0%
Llama-3 2-1B Math 6.0% 2.0%
Llama-2-1B Med 6.0% 4.0%

Since we select the base model with the highest
self-awareness score at each token — rather than
blending their output distributions - the ensemble
should route to the best expert. In practice, noisy
or miscalibrated self-awareness estimates can still
cause weaker specialists to be chosen, degrading
overall performance. This observation underscores
the need for sharper self-awareness calibration or
task-specific routing priors to bias selection to-
ward consistently high-performing models. More-
over, pruning the ensemble to include only mod-

els with more parameters and understanding may
further improve results.

5.2 Qwen

Table 2: Accuracy of Qwen Ensemble and Indi-
vidual Models on MedQA and GSM8K

Model MedQA GSMSK
saLM-1 (L) 140% 80.0%
salLM-1 (NL) 20.0% T78.0%
qwen-25-1.5b 18.0% 68.0%
qwen-25-1.5b-med 20.0% 72.0 %
qwen-25-1.5b-math 14.0% 80.0%

We evaluated the Qwen ensemble using both a lin-
ear and non-linear head (the differences are ex-
plained in Section 4.2). Both variants fall in the
middle range of performance for the MedQA task,
achieving performances as bad as the worst base
model and being outclassed by the fine-tuned ver-
sion. On the GSMS8K task, they attain 78 and
80 %, equivalent to the best single model (the
math-fine-tuned variant at 80 %) and surpassing
the others. This provides evidence that our dy-
namic routing effectively leverages complementary
strengths: the ensemble generalizes better on the
task where no single model dominates, and still
competes with the specialist on its home turf.

6 Conclusions

Our work has explored a new way of ensem-
bling LLMs through routing token generation be-
tween base models, creating salLM-1. Overall,
our findings indicate that it is possible to make
models aware of their own generation capabili-
ties in a collaborative environment. On the two
tested tasks, saLM-1 proves capable of matching
its fine-tuned components’ performance, leverag-
ing dynamic token-by-token routing based on self-
awareness.

Our research is limited in that the computational
power available to us allowed for no more than
three models in the ensemble. Also, future re-
search on the matter should investigate the possi-
bility of sharing the KV cache for ensembles based
on the same architecture and better integration of
tokenizers with different vocabularies.

Bocconi Students for Machine Learning

References

1]

Zhijun Chen, Jingzheng Li, Pengpeng Chen,
Zhuoran Li, Kai Sun, Yuankai Luo, Qian-
ren Mao, Dingqi Yang, Hailong Sun, and
Philip S. Yu. Harnessing multiple large lan-
guage models: A survey on llm ensemble,
2025.

Karl Cobbe, Vineet Kosaraju, Mohammad
Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Ja-
cob Hilton, et al. Training verifiers to solve
math word problems, 2021.

William Fedus, Barret Zoph, and Noam
Shazeer. Switch transformers: Scaling to tril-
lion parameter models with simple and effi-
cient sparsity, 2021.

Tairan Fu, Javier Conde, Gonzalo Martinez,
Maria Grandury, and Pedro Reviriego. Mul-
tiple choice questions: Reasoning makes large
language models (llms) more self-confident
even when they are wrong, 2025.

M. A. Ganaie, Minghui Hu, A. K. Malik,
M. Tanveer, and P. N. Suganthan. Ensemble
deep learning: A review. Engineering Appli-
cations of Artificial Intelligence, 115:105151,
2022.

Aaron Grattafiori, Abhimanyu Dubey, Ab-
hinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, et al. The
llama 3 herd of models, 2024.

[7]

[10]

[11]

[12]

Di Jin, Eileen Pan, Nassim Oufattole, Wei-
Hung Weng, Hanyi Fang, and Peter Szolovits.
What disease does this patient have? a
large-scale open domain question answering
dataset from medical exams, 2020.

Ilya Loshchilov and Frank Hutter. Decou-
pled weight decay regularization. In Inter-

national Conference on Learning Representa-
tions (ICLR), 2019.

Mohaimenul Azam Khan Raiaan, Md. Sad-
dam Hossain Mukta, Kaniz Fatema, Nur Mo-
hammad Fahad, Sadman Sakib, Most Mar-
ufatul Jannat Mim, Jubaer Ahmad, Mo-
hammed Eunus Ali, and Sami Azam. A
review on large language models: Archi-
tectures, applications, taxonomies, open is-
sues and challenges. IEFE Access, 12:26839—
26874, 2024.

Shannon Zejiang Shen, Hunter Lang, Bailin
Wang, Yoon Kim, and David Sontag. Learn-
ing to decode collaboratively with multiple
language models, 2024.

Qwen Team, An Yang, Baosong Yang, Be-
ichen Zhang, Binyuan Hui, Bo Zheng, Bowen
Yu, Chengyuan Li, et al. Qwen2.5 technical
report, 2025.

Jason Wei, Maarten Bosma, Vincent Y. Zhao,
Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M. Dai, and Quoc V.
Le. Finetuned language models are zero-shot
learners, 2022.

A Appendix A: Tokenizer and Vocabulary Statistics

A.1 Loaded Tokenizers
e gwen-25-15b (Qwen/Qwen2.5-1.5B), vocab size: 151665

e quen-25-15b-med (Arthur-77/QWEN2.5-1.5B-medical-finetuned), vocab size: 151 665

e gwen-25-15b-math (Qwen/QWEN2.5-Math-1.5B), vocab size: 151 665

A.2 Basic Vocabulary Statistics

Model #Tokens % Common
qwen-25-15b 151665 100.00%
quen-25-15b-med 151665 100.00%
qwen-25-15b-math 151665 100.00%
Total unique tokens 151665 —
Tokens common to all models 151665 100.00%

Self-Awareness First

A.3 Pairwise Vocabulary Overlap

Pair Common Only in First Only in Second
qwen-25-15b vs quen-25-15b-med 151665 (100.00%) 0 (0.00%) 0 (0.00%)
qwen-25-15b vs qwen-25-15b-math 151665 (100.00%) 0 (0.00%) 0 (0.00%)
quen-25-15b-med vs qwen-25-15b-math 151665 (100.00%) 0 (0.00%) 0 (0.00%)

A.4 Token ID Consistency
Common tokens with different IDs: 0 out of 151665 (0.00%)

A.5 Special Tokens

Model unk _token pad_token bos_token eos_token
qwen-25-15b None <|endoftext|> None <|endoftext|>
quen-25-15b-med None <|endoftext|> None <|im_end|>
qwen-25-15b-math None <|endoftext|> None <|endoftext|>

A.6 Vocabulary Mapping Coverage
e Mapping quen-25-15b-med — qwen-25-15b: 151665 / 151665 (100.00%)

e Mapping qwen-25-15b-math — qwen-25-15b: 151665 / 151665 (100.00%)

Bocconi Students for Machine Learning

A.7 Loaded Tokenizers

e Llama-3_2-1B-General-lora model (bunnycore/Llama-3.2-1B-General-lora_model), vocab size:
128 256

e llama-3_2-1b-gsm8k-full-finetuning (axel-datos/Llama-3.2-1B_gsm8k full-finetuning), vocab
size: 128256

e Johhny1201/1lama3_2_1b med QA_2, vocab size: 128256

A.8 Basic Vocabulary Statistics

Model #Tokens % Common

Llama-3_2-1B-General-lora_model 128 256 100.00%
llama-3_2-1b-gsm8k-full-finetuning 128 256 100.00%
Johhny1201/llama3_2_1b_med QA 2 128256 100.00%

Total unique tokens 128 256 —
Tokens common to all models 128 256 100.00%

A.9 Pairwise Vocabulary Overlap

Pair Common Only in First Only in Second
General vs GSM8K-finetune 128256 (100.00%) 0 (0.00%) 0 (0.00%)
General vs Med-QA 128256 (100.00%) 0 (0.00%) 0 (0.00%)
GSMB8K-finetune vs Med-QA 128256 (100.00%) 0 (0.00%) 0 (0.00%)

A.10 Token ID Consistency
Common tokens with different IDs: 0 out of 128256 (0.00%)

A.11 Special Tokens

Model unk_token pad_token bos_token eos_token
General-lora_model None <|finetune right pad_id|> <|begin of _text|> <|eot_id|>
GSME8K-finetune None <|end_of text|> <|begin of text|> <|end of text|>
Med-QA None <leot_id|> <|begin_of text|> <|eot_id|>

A.12 Vocabulary Mapping Coverage

e Mapping 1lama-3_2-1b-gsm8k-full-finetuning — Llama-3_2-1B-General-lora model: 128256
/ 128256 (100.00%)

e Mapping Johhny1201/1lama3 2 1b med QA 2 — Llama-3_2-1B-General-lora model: 128256
/ 128256 (100.00%)

Self-Awareness First

B Appendix B: Training details

B.1 Training parameters

Each ensemble model was trained for 5 epochs, each time on the full training dataset, with validation
statistics collected at the end of each epoch. Specific parameters of the training are:

Entropy weight: 0.1

Dropout % of head’s weights: 10%

Head’s hidden dimension: 256

o Warmup steps: 50

Learning rate: 1-1074

Random seed: 42

All trainings were completed on a single A100 40GB NVidia GPU with a batch size of 4, lasting
approximately 5 hours per training session. Training was carried out within the Google Colaboratory
environment.

B.2 Results: validation losses per epoch

Epoch | Llama (NL) | QWEN (NL) QWEN (L)

1 1.474 1.049 1.047
2 1.470 1.046 1.043
3 1.469 1.045 1.044
4 1.468 1.045 1.043
) 1.468 1.045 1.045

Bocconi Students for Machine Learning

B.3 Model statistics at evaluation

Mean routing probability (General)

Qwen (L) ® Qwen (NL) ® Llama

"/\“./
0.4 -

0.3
0.2
0.1
0.0
1 2 3 4 5
Epoch

Model activation percent (General)

Qwen (L) @ Qwen (NL) ® Liama
100

80 /\,/

60

%

20

Epoch

Figure 3: Mean routing probability and activation percent for the General model of each ensemble
during validation

10

Self-Awareness First

Mean routing probability (Math)

Qwen (L) @ Qwen (NL) ® Llama

e —

0.4

0.3

0.2 /’\

0.1
0.0
1 2 EpiCh 4 5
Model activation percent (Math)
Qwen (L) @ Qwen (NL) ® Llama
60
50 \/
40
® 30
20
10
/\
(o}

Figure 4: Mean routing probability and activation percent for the Math model of each ensemble
during validation

11

Bocconi Students for Machine Learning

Mean routing probability (General)

Qwen (L) @ Qwen (NL) ® Llama

//\.“.7/
0.4 - 00— .

0.3
0.2
0.1
0.0
1 2 3 4 5
Epoch

Model activation percent (General)

Qwen (L) © Qwen (NL) ® Llama
100

80 /\/

60

40 _—

20

Epoch

Figure 5: Mean routing probability and activation percent for the Med model of each ensemble during
validation

12

Self-Awareness First

C Appendix C: Evaluation details

C.1 Evaluation parameters

The evaluation process (described in Section 4.6) was carried out on the test split of the custom
datasets described in Section 3.2. Due to computational constraints, the test dataset was further
sampled to 50 examples per task. Each valuation process ran in parallel evaluation for both the
saLM-1 model and each of the primitive model, taking approximately 1 hour per task per batch of
models. The process was carried out on a A100 4GB NVidia GPU within the Google Colaboratory
environment.

C.2 GSMS8K Task

For this task, two main statistics were collected for each model:
e Accuracy, counting how many times the math verify reported the answer as correct;

e Average response length.

Models | Accuracy (%) Avg. length (chars)
Llama saLM-1 4% 226.1
Llama-3.2-general 28% 152.1
Llama-3.2-med 2% 119.5
Llama-3.2-math 4% 318.4
Qwen salLM-1 (NL) 78% 156
Qwen saLM-1 (L) 80% 165
Qwen-2.5-general 68% 153.3
Qwen-2.5-med 2% 169.3
Qwen-2.5-math 80% 165.3

C.3 MedQA Task

For this task, two main statistics were collected for each model:
e Accuracy, counting how many times scraped model answer was the same as the ground truth;

o Letter detection rate, counting how many times our script was able to scrape an answer from
the model’s output.

Models | Accuracy (%) Detection rate (%)
Llama sal.M-1 12% 54%
Llama-3.2-general 22% 74%
Llama-3.2-med 6% 24%
Llama-3.2-math 6% 40%
Qwen salLM-1 (NL) 20% 96%
Qwen saLM-1 (L) 14% 82%
Qwen-2.5-general 18% 100%
Qwen-2.5-med 22% 100%
Qwen-2.5-math 14% 90%

13

	Introduction
	Related Work
	Methodology
	Primitive Models
	Training Data

	saLM-1 : Self-Aware Language Models (Ensemble)
	Self‐Awareness Score
	Head Architecture
	Routing (Switching) Method
	Loss function
	Training process
	Evaluation methods
	Differences between generation and training

	Results and Discussion
	Llama with non-linear heads
	Qwen

	Conclusions
	Appendix A: Tokenizer and Vocabulary Statistics
	Loaded Tokenizers
	Basic Vocabulary Statistics
	Pairwise Vocabulary Overlap
	Token ID Consistency
	Special Tokens
	Vocabulary Mapping Coverage
	Loaded Tokenizers
	Basic Vocabulary Statistics
	Pairwise Vocabulary Overlap
	Token ID Consistency
	Special Tokens
	Vocabulary Mapping Coverage

	Appendix B: Training details
	Training parameters
	Results: validation losses per epoch
	Model statistics at evaluation

	Appendix C: Evaluation details
	Evaluation parameters
	GSM8K Task
	MedQA Task

